@freesewing/core
Version:
A library for creating made-to-measure sewing patterns
1,022 lines (930 loc) • 34.8 kB
JavaScript
import { Bezier } from 'bezier-js'
import { Path } from './path.mjs'
import { Point } from './point.mjs'
/*
* See: https://en.wikipedia.org/wiki/Golden_ratio
*/
export const goldenRatio = 1.618034
/*
* cbqc = Cubic Bezier Quarter Circle
* The value to best approximate a (quarter) circle with cubic Bézier curves
* See: https://spencermortensen.com/articles/bezier-circle/
*/
export const cbqc = 0.55191502449351
//////////////////////////////////////////////
// PUBLIC METHODS //
//////////////////////////////////////////////
/**
* Find the intersections between an endless line (beam) and a circle
*
* @param {Point} c - The center Point of the circle
* @param {float} r - The radius of the circle
* @param {Point} p1 - First Point on the line
* @param {Point} p2 - Second Point on the line
* @param {string} sort - Controls the sort of the resulting intersections
* @return {Array} intersections - An array with Point objects for the intersections
*/
export function beamIntersectsCircle(c, r, p1, p2, sort = 'x') {
let dx = p2.x - p1.x
let dy = p2.y - p1.y
let A = Math.pow(dx, 2) + Math.pow(dy, 2)
let B = 2 * (dx * (p1.x - c.x) + dy * (p1.y - c.y))
let C = Math.pow(p1.x - c.x, 2) + Math.pow(p1.y - c.y, 2) - Math.pow(r, 2)
let det = Math.pow(B, 2) - 4 * A * C
if (A <= 0.0000001 || det < 0) return false
// No real solutions
else if (det === 0) {
// One solution
let t = (-1 * B) / (2 * A)
let i1 = new Point(p1.x + t * dx, p1.y + t * dy)
return [i1]
} else {
// Two solutions
let t = (-1 * B + Math.sqrt(det)) / (2 * A)
let i1 = new Point(p1.x + t * dx, p1.y + t * dy)
t = (-1 * B - Math.sqrt(det)) / (2 * A)
let i2 = new Point(p1.x + t * dx, p1.y + t * dy)
if ((sort === 'x' && i1.x <= i2.x) || (sort === 'y' && i1.y <= i2.y)) return [i1, i2]
else return [i2, i1]
}
}
/**
* Finds where an endless line intersects with a given X-value
*
* @param {Point} from - First Point on the line
* @param {Point} to - Second Point on the line
* @param {float} x - X-value to check
* @return {Point} intersection - The Point at the intersection
*/
export function beamIntersectsX(from, to, x) {
if (from.x === to.x) return false // Vertical line
let top = new Point(x, -10)
let bottom = new Point(x, 10)
return beamsIntersect(from, to, top, bottom)
}
/**
* Finds where an endless line intersects with a given Y-value
*
* @param {Point} from - First Point 1 on the line
* @param {Point} to - Second Point on the line
* @param {float} y - Y-value to check
* @return {Point} intersection - The Point at the intersection
*/
export function beamIntersectsY(from, to, y) {
if (from.y === to.y) return false // Horizontal line
let left = new Point(-10, y)
let right = new Point(10, y)
return beamsIntersect(from, to, left, right)
}
/**
* Finds the intersection of two endless lines (beams)
*
* @param {Point} a1 - Point 1 of line A
* @param {Point} a2 - Point 2 of line A
* @param {Point} b1 - Point 1 of line B
* @param {Point} b2 - Point 2 of line B
* @return {Point|false} intersections - The Point at the intersection or `false` if the lines are parallel
*/
export function beamsIntersect(a1, a2, b1, b2) {
const intersection = beamIntersection(a1, a2, b1, b2)
if (!intersection) return false
return intersection.p
}
/**
* Finds the intersection of two endless lines (beams)
*
* @param {Point} a1 - Point 1 of line A
* @param {Point} a2 - Point 2 of line A
* @param {Point} b1 - Point 1 of line B
* @param {Point} b2 - Point 2 of line B
* @return {{p:Point, t: number, u:number}|false} the intersection.
* The method will return `false` if the lines are (approximately) parallel or undefined,
* e.g., if both points of a line have (approximately) the same coordinate.
* Otherwise, p is the point of the intersection,
* t and u determine where the intersection lies relative to the points of line A and line B respectively.
* 0.0 means the intersection is on the first point, 1.0 on the second point.
*/
function beamIntersection(a1, a2, b1, b2) {
// Function to compute the cross-product of two vectors
function crossProduct(v1, v2) {
return v1.x * v2.y - v1.y * v2.x
}
// Vector from a1 to a2
const r = { x: a2.x - a1.x, y: a2.y - a1.y }
// Vector from b1 to b2
const s = { x: b2.x - b1.x, y: b2.y - b1.y }
// Vector from a1 to b1
const ab = { x: b1.x - a1.x, y: b1.y - a1.y }
// Compute the cross-product of r and s
const rCrossS = crossProduct(r, s)
// If the cross-product is close to zero, the lines are parallel or nearly parallel
const EPSILON = 1e-10 // small threshold to handle numerical stability
if (Math.abs(rCrossS) < EPSILON) {
return false // The lines are parallel (or almost parallel), or the points had (almost) the same coordinate
}
// Compute the parameters t and u where the beams intersect
const t = crossProduct(ab, s) / rCrossS
const u = crossProduct(ab, r) / rCrossS
// Compute the intersection point using a1 + t * r and return result
return {
p: new Point(a1.x + t * r.x, a1.y + t * r.y),
t: t,
u: u,
}
}
/**
* Find the intersections between an endless line (beam) and a curve
*
*
* @param {Point} start - Start Point of the line
* @param {Point} end - End Point of the line
* @param {Point} from - Start Point of the curve
* @param {Point} cp1 - Control Point at the start of the curve
* @param {Point} cp2 - Control Point at the end of the curve
* @param {Point} to - End Point of the curve
* @return {false|Point|Array} intersections - false if no intersections, else a singular point or an array of Points at the intersections
*/
export function beamIntersectsCurve(start, end, from, cp1, cp2, to) {
let intersections = []
let bz = new Bezier(
{ x: from.x, y: from.y },
{ x: cp1.x, y: cp1.y },
{ x: cp2.x, y: cp2.y },
{ x: to.x, y: to.y }
)
let line = {
p1: { x: start.x, y: start.y },
p2: { x: end.x, y: end.y },
}
for (let t of Bezier.getUtils().roots(bz.points, line)) {
let isect = bz.get(t)
intersections.push(new Point(isect.x, isect.y))
}
if (intersections.length === 0) return false
else if (intersections.length === 1) return intersections[0]
else return intersections
}
/**
* Returns the string you pass with with the first character converted to uppercase
*
* @param {string} string - The string to capitalize
* @return {string} capitalized - The capitalized string
*/
export function capitalize(string) {
return string.charAt(0).toUpperCase() + string.slice(1)
}
/**
* Find the intersections between two circles
*
* @param {Point} c1 - The center Point of the first circle
* @param {float} r1 - The radius of the first circle
* @param {Point} c2 - The center Point of the second circle
* @param {float} r2 - The radius of the second circle
* @param {string} sort - Controls the sort of the resulting intersections
* @return {Array} intersections - An array with Point objects for the intersections
*/
export function circlesIntersect(c1, r1, c2, r2, sort = 'x') {
let dx = c1.dx(c2)
let dy = c1.dy(c2)
let dist = c1.dist(c2)
// Check for edge cases
if (dist > parseFloat(r1) + parseFloat(r2)) return false // Circles do not intersect
if (dist < Math.abs(parseFloat(r2) - parseFloat(r1))) return false // One circle is contained in the other
if (dist === 0 && r1 === r2) return false // Two circles are identical
let chorddistance = (Math.pow(r1, 2) - Math.pow(r2, 2) + Math.pow(dist, 2)) / (2 * dist)
let halfchordlength = Math.sqrt(Math.pow(r1, 2) - Math.pow(chorddistance, 2))
let chordmidpointx = c1.x + (chorddistance * dx) / dist
let chordmidpointy = c1.y + (chorddistance * dy) / dist
let i1 = new Point(
chordmidpointx + (halfchordlength * dy) / dist,
chordmidpointy - (halfchordlength * dx) / dist
)
let i2 = new Point(
chordmidpointx - (halfchordlength * dy) / dist,
chordmidpointy + (halfchordlength * dx) / dist
)
if ((sort === 'x' && i1.x <= i2.x) || (sort === 'y' && i1.y <= i2.y)) return [i1, i2]
else return [i2, i1]
}
/**
* Finds the edge of a cubic Bezier curve
*
* @param {BezierJs} curve - A BezierJs curve instance
* @param {string} edge - The edge to find: top, bottom, right, or left
* @param {int} steps - The number of steps to divide the curve in while walking it
* @return {Point} edgepoint - A Point object located on the edge of the curve. Returns the first point found, if more than one lies on the edge.
*/
export function curveEdge(curve, edge, steps = 500) {
let x = Infinity
let y = Infinity
let p
if (edge === 'bottom') y = -Infinity
if (edge === 'right') x = -Infinity
for (let i = 0; i < steps; i++) {
p = curve.get(i / steps)
if (
(edge === 'top' && p.y < y) ||
(edge === 'bottom' && p.y > y) ||
(edge === 'right' && p.x > x) ||
(edge === 'left' && p.x < x)
) {
x = p.x
y = p.y
}
}
return new Point(x, y)
}
/**
* Find where a curve intersections with a given X-value
*
* @param {Point} from - Start Point of the curve
* @param {Point} cp1 - Control Point at the start of the curve
* @param {Point} cp2 - Control Point at the end of the curve
* @param {Point} to - End Point of the curve
* @param {float} x - X-value to check for intersections
* @return {Array} intersections - An Array of Point objects of all intersections
*/
export function curveIntersectsX(from, cp1, cp2, to, x) {
let start = new Point(x, -10000)
let end = new Point(x, 10000)
return lineIntersectsCurve(start, end, from, cp1, cp2, to)
}
/**
* Find where a curve intersections with a given Y-value
*
* @param {Point} from - Start Point of the curve
* @param {Point} cp1 - Control Point at the start of the curve
* @param {Point} cp2 - Control Point at the end of the curve
* @param {Point} to - End Point of the curve
* @param {float} y - Y-value to check for intersections
* @return {Array} intersections - An Array of Point objects of all intersections
*/
export function curveIntersectsY(from, cp1, cp2, to, y) {
let start = new Point(-10000, y)
let end = new Point(10000, y)
return lineIntersectsCurve(start, end, from, cp1, cp2, to)
}
/**
* Find where a curve intersections with another curve
*
* @param {Point} fromA - Start Point of the first curve
* @param {Point} cp1A - Control Point at the start of the first curve
* @param {Point} cp2A - Control Point at the end of the first curve
* @param {Point} toA - End Point of the first curve
* @param {Point} fromB - Start Point of the second curve
* @param {Point} cp1B - Control Point at the start of the second curve
* @param {Point} cp2B - Control Point at the end of the second curve
* @param {Point} toB - End Point of the fsecond curve
* @return {Array} intersections - An Array of Point objects of all intersections between the curves, when there are more than 1 intersection
* @return {Point} intersection - A Point object of the intersection when there is exactly 1 intersection
* @return {Boolean} - false when there are no intersections
*/
export function curvesIntersect(fromA, cp1A, cp2A, toA, fromB, cp1B, cp2B, toB) {
let precision = 0.005 // See https://github.com/Pomax/bezierjs/issues/99
let intersections = []
let curveA = new Bezier(
{ x: fromA.x, y: fromA.y },
{ x: cp1A.x, y: cp1A.y },
{ x: cp2A.x, y: cp2A.y },
{ x: toA.x, y: toA.y }
)
let curveB = new Bezier(
{ x: fromB.x, y: fromB.y },
{ x: cp1B.x, y: cp1B.y },
{ x: cp2B.x, y: cp2B.y },
{ x: toB.x, y: toB.y }
)
for (let tvalues of curveA.intersects(curveB, precision)) {
let intersection = curveA.get(tvalues.substr(0, tvalues.indexOf('/')))
intersections.push(new Point(intersection.x, intersection.y))
}
if (intersections.length === 0) return false
else if (intersections.length === 1) return intersections.shift()
else {
let unique = []
for (let i of intersections) {
let dupe = false
for (let u of unique) {
if (i.sitsRoughlyOn(u)) dupe = true
}
if (!dupe) unique.push(i)
}
return unique.length === 1 ? unique.shift() : unique
}
}
/**
* Converts degrees to radians
*
* @param {float} degrees - The degrees to convert
* @return {float} radians - The provided degrees in radians
*/
export function deg2rad(degrees) {
return degrees * (Math.PI / 180)
}
/**
* Generates the transform attributes needed for a given stack
*
* @param {float} x - The translate value along the X-axis
* @param {float} y - The translate value along the Y-axis
* @param {float} rotate - The rotation
* @param {bool} flipX - Whether or not to flip/mirror along the X-axis
* @param {bool} flipY - Whether or not to flip/mirror along the Y-axis
* @param {Stack} stack - The Stack instance
* @return {String[]} transform - An array of SVG transform values
*/
export function generateStackTransform(
x = 0,
y = 0,
rotate = 0,
flipX = false,
flipY = false,
stack
) {
const transforms = []
let xTotal = x || 0
let yTotal = y || 0
let scaleX = 1
let scaleY = 1
// move the part an additional offset so it ends up in the correct spot after flipping.
// it will scale around the part's 0, 0, which isn't always the top left, so we need to move it over so that 0,0 lines up with topRight + topLeft
if (flipX) {
xTotal += stack.topLeft.x
xTotal += stack.bottomRight.x
// reverse the x scale
scaleX = -1
}
if (flipY) {
yTotal += stack.topLeft.y
yTotal += stack.bottomRight.y
scaleY = -1
}
// add the scaling to the transforms
if (scaleX + scaleY < 2) {
transforms.push(`scale(${scaleX}, ${scaleY})`)
}
if (rotate) {
// we can put the center as the rotation origin, so get the center
const center = {
x: stack.topLeft.x + stack.width / 2,
y: stack.topLeft.y + stack.height / 2,
}
// add the rotation around the center to the transforms
transforms.push(`rotate(${rotate}, ${center.x}, ${center.y})`)
}
// put the translation before any other transforms to avoid having to make complex calculations once the matrix has been rotated or scaled
if (xTotal !== 0 || yTotal !== 0) transforms.unshift(`translate(${xTotal}, ${yTotal})`)
return transforms
}
/**
* Find the intersections between a line segment and a circle
*
* @param {Point} c - The center Point of the circle
* @param {float} r - The radius of the circle
* @param {Point} p1 - Start Point of the line segment
* @param {Point} p2 - End Point of the line segment
* @param {string} sort - Controls the sort of the resulting intersections
* @return {Array} intersections - An array with Point objects for the intersections
*/
export function lineIntersectsCircle(c, r, p1, p2, sort = 'x') {
let intersections = beamIntersectsCircle(c, r, p1, p2, sort)
if (intersections === false) return false
else {
if (intersections.length === 1) {
if (pointOnLine(p1, p2, intersections[0])) return intersections
else return false
} else {
let i1 = intersections[0]
let i2 = intersections[1]
if (!pointOnLine(p1, p2, i1, 5) && !pointOnLine(p1, p2, i2, 5)) return false
else if (pointOnLine(p1, p2, i1, 5) && pointOnLine(p1, p2, i2, 5)) {
if ((sort === 'x' && i1.x <= i2.x) || (sort === 'y' && i1.y <= i2.y)) return [i1, i2]
else return [i2, i1]
} else if (pointOnLine(p1, p2, i1, 5)) return [i1]
else if (pointOnLine(p1, p2, i2, 5)) return [i2]
}
}
}
/**
* Finds the intersection of two line segments
*
* @param {Point} a1 - Point 1 of line A
* @param {Point} a2 - Point 2 of line A
* @param {Point} b1 - Point 1 of line B
* @param {Point} b2 - Point 2 of line B
* @return {Point} intersection - The Point at the intersection
*/
export function linesIntersect(a1, a2, b1, b2) {
const intersection = beamIntersection(a1, a2, b1, b2)
if (!intersection) return false
const EPSILON = 1e-10
if (intersection.t < -EPSILON || intersection.t > 1 + EPSILON) return false // outside of line segment A
if (intersection.u < -EPSILON || intersection.u > 1 + EPSILON) return false // outside of line segment B
return intersection.p
}
/**
* Finds the intersection of a beam and a line segment
*
* @param {Point} a1 - Point 1 of beam
* @param {Point} a2 - Point 2 of beam
* @param {Point} b1 - Point 1 of line segment
* @param {Point} b2 - Point 2 of line segment
* @return {Point} intersection - The Point at the intersection
*/
export function beamIntersectsLine(a1, a2, b1, b2) {
const intersection = beamIntersection(a1, a2, b1, b2)
if (!intersection) return false
const EPSILON = 1e-10
if (intersection.u < -EPSILON || intersection.u > 1 + EPSILON) return false // outside of line segment
return intersection.p
}
/**
* Finds the intersections of a line and a curve
*
* @param {Point} start - Start Point of the line
* @param {Point} end - End Point of the line
* @param {Point} from - Start Point of the curve
* @param {Point} cp1 - Control Point at the start of the curve
* @param {Point} cp2 - Control Point at the end of the curve
* @param {Point} to - End Point of the curve
* @return {false|Point|Array} intersections - false if no intersections, else a singular point or an array of Points at the intersections
*/
export function lineIntersectsCurve(start, end, from, cp1, cp2, to) {
let intersections = []
let bz = new Bezier(
{ x: from.x, y: from.y },
{ x: cp1.x, y: cp1.y },
{ x: cp2.x, y: cp2.y },
{ x: to.x, y: to.y }
)
let line = {
p1: { x: start.x, y: start.y },
p2: { x: end.x, y: end.y },
}
for (let t of bz.intersects(line)) {
let isect = bz.get(t)
intersections.push(new Point(isect.x, isect.y))
}
if (intersections.length === 0) return false
else if (intersections.length === 1) return intersections[0]
else return intersections
}
/**
* Helper method to merge translation files from different designs
*
* @param {array} designs - One or more translation objects for designs
* @param {object} options - Configuration object for how to merge these designs
* @return {object} result - A merged object of translations
*/
export function mergeI18n(designs, options) {
const i18n = {}
for (const design of designs) {
for (const lang in design) {
const obj = design[lang]
if (typeof i18n[lang] === 'undefined') i18n[lang] = {}
if (obj.t) i18n[lang].t = obj.t
if (obj.d) i18n[lang].d = obj.d
for (const section of 'spo') {
if (obj[section]) {
if (typeof i18n[lang][section] === 'undefined') i18n[lang][section] = {}
for (const [key, val] of Object.entries(obj[section])) {
if (__keepTranslation(key, options?.[section])) i18n[lang][section][key] = val
}
}
}
}
}
return i18n
}
/**
* Helper method to merge passed in options with default options from the pattern config
*
* @param {object} settings - The settings passed to the pattern
* @param {object} optionsConfig - The pattern's options config
* @return {object} result - An object with the merged options and their values
*/
export function mergeOptions(settings = {}, optionsConfig) {
let merged = {}
for (const [key, option] of Object.entries(optionsConfig)) {
if (typeof option === 'object') {
if (typeof option.pct !== 'undefined') merged[key] = option.pct / 100
else if (typeof option.mm !== 'undefined') merged[key] = option.mm
else if (typeof option.deg !== 'undefined') merged[key] = option.deg
else if (typeof option.count !== 'undefined') merged[key] = option.count
else if (typeof option.bool !== 'undefined') merged[key] = option.bool
else if (typeof option.dflt !== 'undefined') merged[key] = option.dflt
} else merged[key] = option
}
if (typeof settings.options === 'object') merged = { ...merged, ...settings.options }
return merged
}
/**
* Helper method to calculate abolute option value based on a measurement
*
* @param {string} measurement - The measurement to base the calculation on
* @return {object} result - An object with the toAbs() and fromAbs() methods
*/
export function pctBasedOn(measurement) {
return {
toAbs: (val, { measurements }) => measurements[measurement] * val,
fromAbs: (val, { measurements }) =>
Math.round((10000 * val) / measurements[measurement]) / 10000,
}
}
/**
* Finds out whether a Point lies on an endless line (beam)
*
* @param {Point} from - First Point on the line
* @param {Point} to - Second Point on the line
* @param {Point} check - Point to check
* @param {float} precision - How precise we should check
* @return {bool} result - True of the Point is on the line, false when not
*/
export function pointOnBeam(from, to, check, precision = 1e6) {
if (from.sitsOn(check)) return true
if (to.sitsOn(check)) return true
let cross = check.dx(from) * to.dy(from) - check.dy(from) * to.dx(from)
if (Math.abs(Math.round(cross * precision) / precision) === 0) return true
else return false
}
/**
* Finds out whether a Point lies on a (cubic) Bezier curve
*
* @param {Point} start - Start of the curve
* @param {Point} cp1 - Control point at the start of the curve
* @param {Point} cp2 - Control point at the end of the curve
* @param {Point} end - End of the curve
* @param {Point} check - Point to check
* @return {boolean} result - True of the Point is on the curve, false when not
*/
export function pointOnCurve(start, cp1, cp2, end, check) {
return curveParameterFromPoint(start, cp1, cp2, end, check) !== false
}
/**
* Finds where a Point lies on a (cubic) Bezier curve and returns the curve parameter t of this position.
* For example a return value of 0 indicates that the given point is the start of the curve, a return value
* of 1 indicated that the given point is identical to the end of the curve.
*
* A return value of 0.5 indicates that the start point and the first control point had the same influence
* as the end point and the second control point, to create the point, but this doesn't necessarily mean
* that the point lies exactly half-way on the curve.
*
* @param {Point} start - Start of the curve
* @param {Point} cp1 - Control point at the start of the curve
* @param {Point} cp2 - Control point at the end of the curve
* @param {Point} end - End of the curve
* @param {Point} check - Point to check
* @return {false|number} result - relative position on the curve (value between 0 and 1), false when not on curve
*/
export function curveParameterFromPoint(start, cp1, cp2, end, check) {
if (start.sitsOn(check)) return 0
if (end.sitsOn(check)) return 1
let curve = new Bezier(
{ x: start.x, y: start.y },
{ x: cp1.x, y: cp1.y },
{ x: cp2.x, y: cp2.y },
{ x: end.x, y: end.y }
)
let intersections = curve.intersects({
p1: { x: check.x - 1, y: check.y },
p2: { x: check.x + 1, y: check.y },
})
if (intersections.length === 0) {
// Handle edge case of a curve that's a perfect horizontal line
intersections = curve.intersects({
p1: { x: check.x, y: check.y - 1 },
p2: { x: check.x, y: check.y + 1 },
})
}
if (intersections.length > 0) return intersections.shift()
else return false
}
/**
* Finds out whether a Point lies on a line segment
*
* @param {Point} from - Start of the line segment
* @param {Point} to - End of the line segment
* @param {Point} check - Point to check
* @param {float} precision - How precise we should check
* @return {bool} result - True of the Point is on the line segment, false when not
*/
export function pointOnLine(from, to, check, precision = 1e6) {
if (!pointOnBeam(from, to, check, precision)) return false
let lenA = from.dist(to)
let lenB = from.dist(check) + check.dist(to)
if (Math.round(lenA) == Math.round(lenB)) return true
else return false
}
/**
* Converts radians to degrees
*
* @param {float} radians - The radiand to convert
* @return {float} degrees - The provided radians in degrees
*/
export function rad2deg(radians) {
return (radians / Math.PI) * 180
}
/**
* Rounds a value to 2 digits
*
* @param {float} value - The value to round
* @return {float} rounded - The rounded value
*/
export function round(value) {
return Math.round(value * 1e2) / 1e2
}
/**
* Splits curve on a Point
*
* @param {Point} from - Start of the curve
* @param {Point} cp1 - Control point at the start of the curve
* @param {Point} cp1 - Control point at the end of the curve
* @param {Point} end - End of the curve
* @param {Point} split - Point to split the curve on
* @return {Array} halves - An array with the two halves of the Path
*/
export function splitCurve(start, cp1, cp2, end, split) {
let [c1, c2] = new Path().move(start).curve(cp1, cp2, end).split(split)
return [
{
start: c1.ops[0].to,
cp1: c1.ops[1].cp1,
cp2: c1.ops[1].cp2,
end: c1.ops[1].to,
},
{
start: c2.ops[0].to,
cp1: c2.ops[1].cp1,
cp2: c2.ops[1].cp2,
end: c2.ops[1].to,
},
]
}
/**
* Calculates scale factor based on stretch factor
*
* The way people measure stretch intuitively is
* different from the way we handle stretch in code.
* When people say '25% stretch' they mean that
* 10cm fabric should get stretched to 12.5cm fabric.
* In our code, that means we need to scale things by 80%.
* This method does that calculation.
*
* @param {float} stretch - Strech factor
* @return {float} scale - The scale for the provided stretch factor
*/
export function stretchToScale(stretch) {
return 1 / (1 + parseFloat(stretch))
}
/**
* Convert value in mm to cm or imperial units
*
* @param {float} value - Value in millimeter
* @param {astring} to - Either 'metric' or 'imperial'
* @return {string} formatted - The value formatted according to the units
*/
export function units(value, to = 'metric') {
if (to === 'imperial') return round(value / 25.4) + '"'
else return round(value / 10) + 'cm'
}
//////////////////////////////////////////////
// PRIVATE METHODS //
//////////////////////////////////////////////
/**
* Adds a non-enumerable property to an object
*
* @private
* @param {Object} obj - The object to add the property to
* @param {string} name - The name of the property
* @param {mixed} value - The value of the property
* @return {object} obj - The mutated object
*/
export function __addNonEnumProp(obj, name, value) {
Object.defineProperty(obj, name, {
enumerable: false,
configurable: false,
writable: true,
value,
})
return obj
}
/**
* Makes sure a passed argument is a number if it can be cast
* Will log warnings/errors accordingly
*
* @private
* @param {mixed} value - The value to check
* @param {string} param - The name of the parameter to use in the logs
* @param {string} method - The name of the method to use in the logs
* @param {object} log - A logging object
* @return {number} the given value parameter, converted to a number if possible
*/
export function __asNumber(value, param, method, log) {
if (typeof value === 'number') return value
if (typeof value === 'string') {
log.warn(
`Called \`${method}(${param})\` but \`${param}\` is not a number. Will attempt to cast to Number`
)
try {
value = Number(value)
return value
} catch {
log.error(
`Called \`${method}(${param})\` but \`${param}\` is not a number nor can it be cast to one`
)
}
} else log.error(`Called \`${method}(${param})\` but \`${param}\` is not a number`)
return value
}
/**
* Checks whether the paramater passed to it is a valid coordinate (x and y attribute)
*
* @private
* @param {object} value - The object to check
* @return {bool} result - True if it is a valid coordinate, false when not
*/
export function __isCoord(value) {
return value === value // NaN does not equal itself
? typeof value === 'number'
: false
}
/**
* Returns the internal hook name for a macro
*
* @private
* @param {string} name - The macro name
* @return {string} macroName - The inernal macroName
*/
export function __macroName(name) {
return `__macro_${name.toLowerCase()}`
}
/**
* Returns true if we want to keep the translation
* Called by mergeI18n
*
* @private
* @param {string} key - The translation key
* @param {object} options - The options (for this particular section of the translation file)
* @return {bool} result - Whether or not to keep the translation
*/
function __keepTranslation(key, options) {
// Drop it?
if (options?.drop && options.drop.includes(key)) return false
// Keep only some and not this one?
if (options?.keep && !options.keep.includes(key)) return false
// Keep it
return true
}
/**
* Helper method to parse an (SVG) transform string
*
* @private
* @param {string} transform - The SVG transform string
* @return {object} result - An object with the parts, name, and values
*/
function __parseTransform(transform) {
const parts = transform.match(/(\w+)\(([^)]+)\)/)
const name = parts[1]
const values = parts[2].split(/,\s*/).map(parseFloat)
return { parts, name, values }
}
/**
* Applies a transformation of the given type to the matrix
* @param {String} transformationType the transformation type (tranlate, rotate, scale, skew, etc)
* @param {Number[]} matrix the matrix to apply the transform to
* @param {Number[]} values the transformation values to apply
* @return {Number[]} the transformed matrix
*/
function matrixTransform(transformationType, matrix, values) {
// Update matrix for transform
switch (transformationType) {
case 'matrix':
matrix = [
matrix[0] * values[0] + matrix[2] * values[1],
matrix[1] * values[0] + matrix[3] * values[1],
matrix[0] * values[2] + matrix[2] * values[3],
matrix[1] * values[2] + matrix[3] * values[3],
matrix[0] * values[4] + matrix[2] * values[5] + matrix[4],
matrix[1] * values[4] + matrix[3] * values[5] + matrix[5],
]
break
case 'translate':
matrix[4] += matrix[0] * values[0] + matrix[2] * values[1]
matrix[5] += matrix[1] * values[0] + matrix[3] * values[1]
break
case 'scale':
matrix[0] *= values[0]
matrix[1] *= values[0]
matrix[2] *= values[1]
matrix[3] *= values[1]
break
case 'rotate': {
const angle = (values[0] * Math.PI) / 180
const centerX = values[1]
const centerY = values[2]
// if there's a rotation center, we need to move the origin to that center
if (centerX !== undefined) {
matrix = matrixTransform('translate', matrix, [centerX, centerY])
}
// rotate
const cos = Math.cos(angle)
const sin = Math.sin(angle)
matrix = [
matrix[0] * cos + matrix[2] * sin,
matrix[1] * cos + matrix[3] * sin,
matrix[0] * -sin + matrix[2] * cos,
matrix[1] * -sin + matrix[3] * cos,
matrix[4],
matrix[5],
]
// move the origin back to origin
if (centerX !== undefined) {
matrix = matrixTransform('translate', matrix, [-centerX, -centerY])
}
break
}
case 'skewX':
matrix[2] += matrix[0] * Math.tan((values[0] * Math.PI) / 180)
matrix[3] += matrix[1] * Math.tan((values[0] * Math.PI) / 180)
break
case 'skewY':
matrix[0] += matrix[2] * Math.tan((values[0] * Math.PI) / 180)
matrix[1] += matrix[3] * Math.tan((values[0] * Math.PI) / 180)
break
}
return matrix
}
/**
* Combines an array of (SVG) transforms into a single matrix transform
*
* @param {array} transforms - The list of transforms to combine
* @return {string} matrixTransform - The combined matrix transform
*/
export function combineTransforms(transforms = []) {
// Don't bother if there are no part transforms
if (transforms.length < 1) return ''
// The starting matrix
let matrix = [1, 0, 0, 1, 0, 0]
// Loop through the transforms
for (let i = 0; i < transforms.length; i++) {
// Parse the transform string
const { name, values } = __parseTransform(transforms[i])
matrix = matrixTransform(name, matrix, values)
}
// Return the combined matrix transform
return 'matrix(' + matrix.join(', ') + ')'
}
/**
* Applies and (SVG) transform to a point's coordinates (x and y)
*
* @param {string} transform - The transform to apply
* @param {Point} point - The point of which to update the coordinates
* @return {Point} point - The point with the transform applied to its coordinates
*/
export function applyTransformToPoint(transform, point) {
// Parse the transform string
const { name, values } = __parseTransform(transform)
// The starting matrix
let matrix = [1, 0, 0, 1, 0, 0]
matrix = matrixTransform(name, matrix, values)
// Apply the matrix transform to the coordinates
const newX = point.x * matrix[0] + point.y * matrix[2] + matrix[4]
const newY = point.x * matrix[1] + point.y * matrix[3] + matrix[5]
point.x = newX
point.y = newY
return point
}
/**
* Get the bounds of a given object after transforms have been applied
* @param {Object} boundsObj any object with `topLeft` and `bottomRight` properties
* @param {Boolean|String[]} transforms the transforms to apply to the bounds, structured as they would be for being applied as an svg attribute
* @return {Object} `topLeft` and `bottomRight` for the transformed bounds
*/
export function getTransformedBounds(boundsObj, transforms = false) {
if (!boundsObj.topLeft) return {}
// get all corners of the part's bounds
let tl = boundsObj.topLeft
let br = boundsObj.bottomRight
let tr = new Point(br.x, tl.y)
let bl = new Point(tl.x, br.y)
// if there are transforms on the part, apply them to the corners so that we have the correct bounds
if (transforms) {
const combinedTransform = combineTransforms(transforms)
tl = applyTransformToPoint(combinedTransform, tl.copy())
br = applyTransformToPoint(combinedTransform, br.copy())
tr = applyTransformToPoint(combinedTransform, tr.copy())
bl = applyTransformToPoint(combinedTransform, bl.copy())
}
// now get the top left and bottom right after transforms
const transformedTl = new Point(
Math.min(tl.x, br.x, bl.x, tr.x),
Math.min(tl.y, br.y, bl.y, tr.y)
)
const transformedBr = new Point(
Math.max(tl.x, br.x, bl.x, tr.x),
Math.max(tl.y, br.y, bl.y, tr.y)
)
return {
topLeft: transformedTl,
bottomRight: transformedBr,
}
}