@freesewing/core
Version:
A library for creating made-to-measure sewing patterns
1,615 lines (1,483 loc) • 49.5 kB
JavaScript
import { Attributes } from './attributes.mjs'
import { Point } from './point.mjs'
import { Bezier } from 'bezier-js'
import {
deg2rad,
linesIntersect,
lineIntersectsCurve,
curvesIntersect,
pointOnLine,
curveParameterFromPoint,
curveEdge,
round,
__addNonEnumProp,
__asNumber,
beamIntersectsCurve,
beamIntersectsLine,
} from './utils.mjs'
//////////////////////////////////////////////
// CONSTRUCTOR //
//////////////////////////////////////////////
/**
* Constructor for a Path
*
* @constructor
* @return {Path} this - The Path instance
*/
export function Path() {
// Enumerable properties
this.hidden = false
this.ops = []
this.attributes = new Attributes()
this.topLeft = false
this.bottomRight = false
return this
}
//////////////////////////////////////////////
// PUBLIC METHODS //
//////////////////////////////////////////////
/**
* Adds a curve operation without cp1 via cp2 to Point to
*
* @param {Point} cp2 - The end control Point
* @param {Point} to - The end point
* @return {Path} this - The Path instance
*/
Path.prototype._curve = function (cp2, to) {
if (to instanceof Point !== true)
this.log.warn('Called `Path._curve(cp2, to)` but `to` is not a `Point` object')
if (cp2 instanceof Point !== true)
this.log.warn('Called `Path._curve(cp2, to)` but `cp2` is not a `Point` object')
let cp1 = this.ops.slice(-1).pop().to
this.ops.push({ type: 'curve', cp1, cp2, to })
return this
}
/**
* Chainable way to add to the class attribute
*
* @param {string} className - The value to add to the class attribute
* @return {Path} this - The Path instance
*/
Path.prototype.addClass = function (className = false) {
if (className) this.attributes.add('class', className)
return this
}
/**
* A chainable way to add text to a Path
*
* @param {string} text - The text to add to the Path
* @param {string} className - The CSS classes to apply to the text
* @return {Path} this - The Path instance
*/
Path.prototype.addText = function (text = '', className = false) {
this.attributes.add('data-text', text)
if (className) this.attributes.add('data-text-class', className)
return this
}
/**
* Returns the SVG pathstring for this path
*
* @return {string} svg - The SVG pathsstring (the 'd' attribute of an SVG path)
*/
Path.prototype.asPathstring = function () {
let d = ''
for (let op of this.ops) {
switch (op.type) {
case 'move':
d += `M ${round(op.to.x)},${round(op.to.y)}`
break
case 'line':
d += ` L ${round(op.to.x)},${round(op.to.y)}`
break
case 'curve':
d += ` C ${round(op.cp1.x)},${round(op.cp1.y)} ${round(op.cp2.x)},${round(
op.cp2.y
)} ${round(op.to.x)},${round(op.to.y)}`
break
case 'close':
d += ' z'
break
}
}
return d
}
// Quick helper to return a drawing op as renderProps
const opAsrenderProp = (op) => {
const props = { type: op.type }
for (const p of ['from', 'to', 'cp1', 'cp2']) {
if (op[p]) props[p] = op[p].asRenderProps()
}
return props
}
/**
* Returns a path as an object suitable for inclusion in renderprops
*
* @return {object} path - A plain object representing the path
*/
Path.prototype.asRenderProps = function () {
return {
attributes: this.attributes.asRenderProps(),
hidden: this.hidden,
name: this.name,
ops: this.ops.map((op) => opAsrenderProp(op)),
topLeft: this.topLeft,
bottomRight: this.bottomRight,
width: this.bottomRight.x - this.topLeft.x,
height: this.bottomRight.y - this.topLeft.y,
d: this.asPathstring(),
}
}
/**
* Chainable way to add an attribute
*
* @param {string} name - Name of the attribute to add
* @param {string} value - Value of the attribute to add
* @param {bool} overwrite - Whether to overwrite an existing attrubute or not
* @return {Path} this - The Path instance
*/
Path.prototype.attr = function (name, value, overwrite = false) {
if (!name)
this.log.warn(
'Called `Path.attr(name, value, overwrite=false)` but `name` is undefined or false'
)
if (typeof value === 'undefined')
this.log.warn('Called `Path.attr(name, value, overwrite=false)` but `value` is undefined')
if (overwrite)
this.log.debug(
`Overwriting \`Path.attribute.${name}\` with ${value} (was: ${this.attributes.get(name)})`
)
if (overwrite) this.attributes.set(name, value)
else this.attributes.add(name, value)
return this
}
/**
* Returns an object holding topLeft and bottomRight Points of the bounding box of this path
*
* @return {object} bbox - The bounding box object holding a topLeft and bottomRight Point instance
*/
Path.prototype.bbox = function () {
let bbs = []
let current
for (let i in this.ops) {
let op = this.ops[i]
if (op.type === 'line') {
bbs.push(__lineBoundingBox({ from: current, to: op.to }))
} else if (op.type === 'curve') {
bbs.push(
__curveBoundingBox(
new Bezier(
{ x: current.x, y: current.y },
{ x: op.cp1.x, y: op.cp1.y },
{ x: op.cp2.x, y: op.cp2.y },
{ x: op.to.x, y: op.to.y }
)
)
)
}
if (op.to) current = op.to
}
if (bbs.length === 0 && current) {
// Degenerate case: Line is a point
bbs.push(__lineBoundingBox({ from: current, to: current }))
}
return __bbbbox(bbs)
}
/**
* Adds a circle section to this path.
* Positive angles create a counter-clockwise arc starting from the current point,
* negative angles create a clockwise arc.
*
* Note: This is unrelated to SVG arc segments in paths, we approximate the circle segment using
* standard cubic Bézier curves
*
* @param {number} deg span of the new circle section in degrees.
* @param {Point} origin center point of the circle (rotation origin)
* @returns {Path} this
*/
Path.prototype.circleSegment = function (deg, origin) {
const radius = this.end().dist(origin)
// ensure a full circle gets 4 segments for a good approximation
// We could use more, but this is not necessary
const steps = Math.ceil(Math.abs(deg / 90))
const stepAngle = deg / steps
const stepAngleRad = deg2rad(stepAngle)
// magic formula, calculate distance of control points for a good circle segment approximation
const distance = radius * (4.0 / 3.0) * Math.tan(stepAngleRad / 4)
// Append individual segments for arc approximation
// steps is usually between 1 and 4
for (let i = 0; i < steps; i++) {
const startPoint = this.end()
const endPoint = startPoint.rotate(stepAngle, origin)
const startAngle = startPoint.angle(origin) - 90
const endAngle = endPoint.angle(origin) + 90
const cp1 = startPoint.shift(startAngle, distance)
const cp2 = endPoint.shift(endAngle, distance)
this.curve(cp1, cp2, endPoint)
}
return this
}
/**
* Returns this after cleaning out in-place path operations
*
* Cleaned means that any in-place ops will be removed
* An in-place op is when a drawing operation doesn't draw anything
* like a line from the point to the same point
*
* @return {Path} this - This, but cleaned
*/
Path.prototype.clean = function () {
const ops = []
let cur
for (const i in this.ops) {
const op = this.ops[i]
if (['move', 'close', 'noop'].includes(op.type)) ops.push(op)
else if (op.type === 'line') {
if (!op.to.sitsRoughlyOn(cur)) ops.push(op)
} else if (op.type === 'curve') {
if (!(op.cp1.sitsRoughlyOn(cur) && op.cp2.sitsRoughlyOn(cur) && op.to.sitsRoughlyOn(cur)))
ops.push(op)
}
cur = op.to
}
if (ops.length < this.ops.length) this.ops = ops
// A path with not drawing operations or only a move is not path at all
return ops.length === 0 || (ops.length === 1 && ops[0].type === 'move') ? false : this
}
/**
* Returns a deep copy of this path
*
* @return {Path} clone - A clone of this Path instance
*/
Path.prototype.clone = function () {
let clone = new Path().__withLog(this.log).setHidden(this.hidden)
if (this.topLeft) clone.topLeft = this.topLeft.clone()
else clone.topLeft = false
if (this.bottomRight) clone.bottomRight = this.bottomRight.clone()
else clone.bottomRight = false
clone.attributes = this.attributes.clone()
clone.ops = []
for (let i in this.ops) {
let op = this.ops[i]
clone.ops[i] = { type: op.type }
if (op.type === 'move' || op.type === 'line') {
clone.ops[i].to = op.to.clone()
} else if (op.type === 'curve') {
clone.ops[i].to = op.to.clone()
clone.ops[i].cp1 = op.cp1.clone()
clone.ops[i].cp2 = op.cp2.clone()
} else if (op.type === 'noop') {
clone.ops[i].id = op.id
}
}
return clone
}
/**
* Adds a close operation
*
* @return {Path} this - The Path instance
*/
Path.prototype.close = function () {
this.ops.push({ type: 'close' })
return this
}
/**
* Combines one or more Paths into a single Path instance
*
* @param {array} paths - The paths to combine
* @return {Path} combo - The combined Path instance
*/
Path.prototype.combine = function (...paths) {
return __combinePaths(this, ...paths)
}
/**
* Adds a curve operation via cp1 & cp2 to Point to
*
* @param {Point} cp1 - The start control Point
* @param {Point} cp2 - The end control Point
* @param {Point} to - The end point
* @return {Path} this - The Path instance
*/
Path.prototype.curve = function (cp1, cp2, to) {
if (to instanceof Point !== true)
this.log.warn('Called `Path.curve(cp1, cp2, to)` but `to` is not a `Point` object')
if (cp1 instanceof Point !== true)
this.log.warn('Called `Path.curve(cp1, cp2, to)` but `cp1` is not a `Point` object')
if (cp2 instanceof Point !== true)
this.log.warn('Called `Path.curve(cp1, cp2, to)` but `cp2` is not a `Point` object')
this.ops.push({ type: 'curve', cp1, cp2, to })
return this
}
/**
* Adds a curve operation via cp1 with no cp2 to Point to
*
* @param {Point} cp1 - The start control Point
* @param {Point} to - The end point
* @return {Path} this - The Path instance
*/
Path.prototype.curve_ = function (cp1, to) {
if (to instanceof Point !== true)
this.log.warn('Called `Path.curve_(cp1, to)` but `to` is not a `Point` object')
if (cp1 instanceof Point !== true)
this.log.warn('Called `Path.curve_(cp1, to)` but `cp1` is not a `Point` object')
let cp2 = to.copy()
this.ops.push({ type: 'curve', cp1, cp2, to })
return this
}
/**
* Divides this Path in atomic paths
*
* @return {Array} paths - An array of atomic paths that together make up this Path
*/
Path.prototype.divide = function () {
let paths = []
let current, start
for (let i in this.ops) {
let op = this.ops[i]
if (op.type === 'move') {
start = op.to
} else if (op.type === 'line') {
if (!op.to.sitsRoughlyOn(current))
paths.push(new Path().__withLog(this.log).move(current).line(op.to))
} else if (op.type === 'curve') {
paths.push(new Path().__withLog(this.log).move(current).curve(op.cp1, op.cp2, op.to))
} else if (op.type === 'close') {
paths.push(new Path().__withLog(this.log).move(current).line(start))
}
if (op.to) current = op.to
}
return paths
}
/**
* Returns the point at an edge of this Path
*
* @param {string} side - One of 'topLeft', 'bottomRight', 'topRight', or 'bottomLeft'
* @return {object} point - The Point at the requested edge of (the bounding box of) this Path
*/
Path.prototype.edge = function (side) {
this.__boundary()
if (side === 'topLeft') return this.topLeft
else if (side === 'bottomRight') return this.bottomRight
else if (side === 'topRight') return new Point(this.bottomRight.x, this.topLeft.y)
else if (side === 'bottomLeft') return new Point(this.topLeft.x, this.bottomRight.y)
else {
let s = side + 'Op'
if (this[s].type === 'move') return this[s].to
else if (this[s].type === 'line') {
if (side === 'top') {
if (this.topOp.to.y < this.topOp.from.y) return this.topOp.to
else return this.topOp.from
} else if (side === 'left') {
if (this.leftOp.to.x < this.leftOp.from.x) return this.leftOp.to
else return this.leftOp.from
} else if (side === 'bottom') {
if (this.bottomOp.to.y > this.bottomOp.from.y) return this.bottomOp.to
else return this.bottomOp.from
} else if (side === 'right') {
if (this.rightOp.to.x > this.rightOp.from.x) return this.rightOp.to
else return this.rightOp.from
}
} else if (this[s].type === 'curve')
return curveEdge(
new Bezier(
{ x: this[s].from.x, y: this[s].from.y },
{ x: this[s].cp1.x, y: this[s].cp1.y },
{ x: this[s].cp2.x, y: this[s].cp2.y },
{ x: this[s].to.x, y: this[s].to.y }
),
side
)
}
}
/**
* Returns the endpoint of this path
*
* @return {Point} end - The end point
*/
Path.prototype.end = function () {
if (this.ops.length < 1)
this.log.error('Called `Path.end()` but this path has no drawing operations')
let op = this.ops[this.ops.length - 1]
if (op.type === 'close') return this.start()
else return op.to
}
/**
* Hide the path
*
* @return {Path} path - The Path instance
*/
Path.prototype.hide = function () {
this.hidden = true
return this
}
/**
* Replace a noop operation with the ops from path
*
* @param {string} noopId = The ID of the noop where the operations should be inserted
* @param {Path} path = The path of which the operations should be inserted
* @return {object} this - The Path instance
*/
Path.prototype.insop = function (noopId, path) {
if (!noopId) this.log.warn('Called `Path.insop(noopId, path)` but `noopId` is undefined or false')
if (path instanceof Path !== true)
this.log.warn('Called `Path.insop(noopId, path) but `path` is not a `Path` object')
let newPath = this.clone()
for (let i in newPath.ops) {
if (newPath.ops[i].type === 'noop' && newPath.ops[i].id === noopId) {
newPath.ops = newPath.ops
.slice(0, i)
.concat(path.ops)
.concat(newPath.ops.slice(Number(i) + 1))
}
}
return newPath
}
/**
* Finds intersections between this Path and another Path
*
* @param {Path} path - The Path instance to check for intersections with this Path instance
* @return {Array} intersections - An array of Point objects where the paths intersect
*/
Path.prototype.intersects = function (path) {
if (this === path)
this.log.error('You called Path.intersects(path)` but `path` and `this` are the same object')
let intersections = []
for (let pathA of this.divide()) {
for (let pathB of path.divide()) {
if (pathA.ops[1].type === 'line') {
if (pathB.ops[1].type === 'line') {
__addIntersectionsToArray(
linesIntersect(pathA.ops[0].to, pathA.ops[1].to, pathB.ops[0].to, pathB.ops[1].to),
intersections
)
} else if (pathB.ops[1].type === 'curve') {
__addIntersectionsToArray(
lineIntersectsCurve(
pathA.ops[0].to,
pathA.ops[1].to,
pathB.ops[0].to,
pathB.ops[1].cp1,
pathB.ops[1].cp2,
pathB.ops[1].to
),
intersections
)
}
} else if (pathA.ops[1].type === 'curve') {
if (pathB.ops[1].type === 'line') {
__addIntersectionsToArray(
lineIntersectsCurve(
pathB.ops[0].to,
pathB.ops[1].to,
pathA.ops[0].to,
pathA.ops[1].cp1,
pathA.ops[1].cp2,
pathA.ops[1].to
),
intersections
)
} else if (pathB.ops[1].type === 'curve') {
__addIntersectionsToArray(
curvesIntersect(
pathA.ops[0].to,
pathA.ops[1].cp1,
pathA.ops[1].cp2,
pathA.ops[1].to,
pathB.ops[0].to,
pathB.ops[1].cp1,
pathB.ops[1].cp2,
pathB.ops[1].to
),
intersections
)
}
}
}
}
return intersections
}
/**
* Finds intersections between this Path and an endless line (beam) defined by two points
*
* @param {Point} start - The first point on the beam
* @param {Point} end - The second point on the beam
* @return {Array} intersections - An array of Point objects where the path intersects the beam
*/
Path.prototype.intersectsBeam = function (start, end) {
let intersections = []
for (let pathA of this.divide()) {
if (pathA.ops[1].type === 'line') {
__addIntersectionsToArray(
beamIntersectsLine(start, end, pathA.ops[0].to, pathA.ops[1].to),
intersections
)
} else if (pathA.ops[1].type === 'curve') {
__addIntersectionsToArray(
beamIntersectsCurve(
start,
end,
pathA.ops[0].to,
pathA.ops[1].cp1,
pathA.ops[1].cp2,
pathA.ops[1].to
),
intersections
)
}
}
return intersections
}
/**
* Finds intersections between this Path and an X value
*
* @param {float} x - The X-value to check for intersections
* @return {Array} paths - An array of atomic paths that together make up this Path
*/
Path.prototype.intersectsX = function (x) {
if (typeof x !== 'number') this.log.error('Called `Path.intersectsX(x)` but `x` is not a number')
return this.__intersectsAxis(x, 'x')
}
/**
* Finds intersections between this Path and an Y value
*
* @param {float} y - The Y-value to check for intersections
* @return {Array} paths - An array of atomic paths that together make up this Path
*/
Path.prototype.intersectsY = function (y) {
if (typeof y !== 'number') this.log.error('Called `Path.intersectsX(y)` but `y` is not a number')
return this.__intersectsAxis(y, 'y')
}
/**
* Joins this Path with that Path, and closes them if wanted
*
* The legacy (prior to v3.2) form of this method too two parameters:
* - The Path to join this path with
* - A boolean expressing whether the joined path should be closed
* In retrospect, that was kind of a dumb idea, because if the path
* needs tobe closed, you can juse chain the .join() with a .close()
*
* So now, this method is variadic, and it will join as many paths as you want.
* However, we keep it backwards compatible, and raise a deprecation warning when used that way.
*
* @param {array} paths - The Paths to join this Path with
* @return {Path} joint - The joint Path instance
*/
Path.prototype.join = function (...paths) {
if (paths.length < 1) {
this.log.error('Called `Path.join(that)` but `that` is not a `Path` object')
return this
}
/*
* Check for legacy signature
*/
if (paths.length === 2 && [true, false].includes(paths[1])) {
this.log.warn(
'`Path.join()` was called with the legacy signature passing a bool as second parameter. This is deprecated and will be removed in FreeSewing v4'
)
return paths[1] ? __joinPaths([this, paths[0]]).close() : __joinPaths([this, paths[0]])
}
/*
* New variadic approach
*/
let i = 0
for (const path of paths) {
if (path instanceof Path !== true)
this.log.error(
`Called \`Path.join(paths)\` but the path with index \`${i}\` is not a \`Path\` object`
)
i++
}
return __joinPaths([this, ...paths])
}
/**
* Return the length of this Path
*
* @param {bool} withMoves - Include length of move operations inside the path
* @return {float} length - The length of this path
*/
Path.prototype.length = function (withMoves = false) {
let current, start
let length = 0
for (let i in this.ops) {
let op = this.ops[i]
if (op.type === 'move') {
if (typeof start === 'undefined') start = op.to
else if (withMoves) length += current.dist(op.to)
} else if (op.type === 'line') {
length += current.dist(op.to)
} else if (op.type === 'curve') {
length += new Bezier(
{ x: current.x, y: current.y },
{ x: op.cp1.x, y: op.cp1.y },
{ x: op.cp2.x, y: op.cp2.y },
{ x: op.to.x, y: op.to.y }
).length()
} else if (op.type === 'close') {
length += current.dist(start)
}
if (op.to) current = op.to
}
return length
}
/**
* Adds a line operation to Point to
*
* @param {Point} to - The point to stroke to
* @return {object} this - The Path instance
*/
Path.prototype.line = function (to) {
if (to instanceof Point !== true)
this.log.warn('Called `Path.line(to)` but `to` is not a `Point` object')
this.ops.push({ type: 'line', to })
return this
}
/**
* Adds a move operation to Point to
*
* @param {Point} to - The point to move to
* @return {object} this - The Path instance
*/
Path.prototype.move = function (to) {
if (to instanceof Point !== true)
this.log.warn('Called `Path.move(to)` but `to` is not a `Point` object')
this.ops.push({ type: 'move', to })
return this
}
/**
* Adds a noop operation
*
* @param {string} id = The ID to reference this noop later with Path.insop()
* @return {object} this - The Path instance
*/
Path.prototype.noop = function (id = false) {
this.ops.push({ type: 'noop', id })
return this
}
/**
* Returns an offset version of this path as a new path
*
* @param {float} distance - The distance by which to offset
* @return {object} this - The Path instance
*/
Path.prototype.offset = function (distance) {
distance = __asNumber(distance, 'distance', 'Path.offset', this.log)
return __pathOffset(this, distance, this.log)
}
/**
* Returns a reversed version of this Path
*
* @return {object} reverse - A Path instance that is the reversed version of this Path
*/
Path.prototype.reverse = function (cloneAttributes = false) {
let sections = []
let current
let closed = false
for (let i in this.ops) {
let op = this.ops[i]
if (op.type === 'line') {
if (!op.to.sitsOn(current))
sections.push(new Path().__withLog(this.log).move(op.to).line(current))
} else if (op.type === 'curve') {
sections.push(new Path().__withLog(this.log).move(op.to).curve(op.cp2, op.cp1, current))
} else if (op.type === 'close') {
closed = true
}
if (op.to) current = op.to
}
let rev = new Path().__withLog(this.log).move(current)
for (let section of sections.reverse()) rev.ops.push(section.ops[1])
if (closed) rev.close()
if (cloneAttributes) rev.attributes = this.attributes.clone()
return rev
}
/**
* Returns a rotated version of this Path
* @param {number} deg Angle to rotate, see {@link Point#rotate}
* @param {Point} rotationOrigin point to use as rotation origin, see {@link Point#rotate}
* @param {boolean} cloneAttributes If the rotated path should receive a copy of the path attributes
*
* @return {Path} A Path instance that is a rotated copy of this Path
*/
Path.prototype.rotate = function (deg, rotationOrigin, cloneAttributes = false) {
deg = __asNumber(deg, 'deg', 'Path.rotate', this.log)
if (!(rotationOrigin instanceof Point))
this.log.warn('Called `Path.rotate(deg,that)` but `rotationOrigin` is not a `Point` object')
const rotatedPath = new Path().__withLog(this.log)
for (const op of this.ops) {
if (op.type === 'move') {
const to = op.to.rotate(deg, rotationOrigin)
rotatedPath.move(to)
} else if (op.type === 'line') {
const to = op.to.rotate(deg, rotationOrigin)
rotatedPath.line(to)
} else if (op.type === 'curve') {
const cp1 = op.cp1.rotate(deg, rotationOrigin)
const cp2 = op.cp2.rotate(deg, rotationOrigin)
const to = op.to.rotate(deg, rotationOrigin)
rotatedPath.curve(cp1, cp2, to)
} else if (op.type === 'close') {
rotatedPath.close()
}
}
if (cloneAttributes) rotatedPath.attributes = this.attributes.clone()
return rotatedPath
}
/**
* Returns a rough estimate of the length of this path
*
* This avoids walking Bezier curves and thus is much faster but not accurate at all
*
* @return {float} length - The approximate length of the path
*/
Path.prototype.roughLength = function () {
let current, start
let length = 0
for (let i in this.ops) {
let op = this.ops[i]
if (op.type === 'move') {
start = op.to
} else if (op.type === 'line') {
length += current.dist(op.to)
} else if (op.type === 'curve') {
length += current.dist(op.cp1)
length += op.cp1.dist(op.cp2)
length += op.cp2.dist(op.to)
} else if (op.type === 'close') {
length += current.dist(start)
}
if (op.to) current = op.to
}
return length
}
/**
* Chainable way to set the class attribute
*
* @param {string} className - The value to set on the class attribute
* @return {object} this - The Path instance
*/
Path.prototype.setClass = function (className = false) {
if (className) this.attributes.set('class', className)
return this
}
/**
* Set the hidden attribute
*
* @param {boolean} hidden - The value to set the hidden property to
* @return {object} this - The Path instance
*/
Path.prototype.setHidden = function (hidden = false) {
if (hidden) this.hidden = true
else this.hidden = false
return this
}
/**
* A chainable way to set text on a Path
*
* @param {string} text - The text to add to the Path
* @param {string} className - The CSS classes to apply to the text
* @return {Path} this - The Path instance
*/
Path.prototype.setText = function (text = '', className = false) {
this.attributes.set('data-text', text)
if (className) this.attributes.set('data-text-class', className)
return this
}
/**
* Returns a point that lies at distance along this Path
*
* @param {float} distance - The distance to shift along this Path
* @param {int} stepsPerMm - The amount of steps per millimeter to talke while walking the cubic Bezier curve
* @return {Point} point - The point that lies distance along this Path
*/
Path.prototype.shiftAlong = function (distance, stepsPerMm = 10) {
distance = __asNumber(distance, 'distance', 'Path.shiftAlong', this.log)
let len = 0
let current
for (let i in this.ops) {
let op = this.ops[i]
if (op.type === 'line') {
let thisLen = op.to.dist(current)
if (Math.abs(len + thisLen - distance) < 0.1) return op.to
if (len + thisLen > distance) return current.shiftTowards(op.to, distance - len)
len += thisLen
} else if (op.type === 'curve') {
let bezier = new Bezier(
{ x: current.x, y: current.y },
{ x: op.cp1.x, y: op.cp1.y },
{ x: op.cp2.x, y: op.cp2.y },
{ x: op.to.x, y: op.to.y }
)
let thisLen = bezier.length()
if (Math.abs(len + thisLen - distance) < 0.1) return op.to
if (len + thisLen > distance)
return __shiftAlongBezier(distance - len, bezier, thisLen * stepsPerMm)
len += thisLen
}
current = op.to
}
this.log.error(
`Called \`Path.shiftAlong(distance)\` with a \`distance\` of \`${distance}\` but \`Path.length()\` is only \`${this.length()}\``
)
}
/**
* Returns a point that lies at fraction along this Path
*
* @param {float} fraction - The fraction to shift along this Path
* @param {int} stepsPerMm - The amount of steps per millimeter to talke while walking the cubic Bezier curve
* @return {Point} point - The point that lies fraction along this Path
*/
Path.prototype.shiftFractionAlong = function (fraction, stepsPerMm = 10) {
if (typeof fraction !== 'number')
this.log.error('Called `Path.shiftFractionAlong(fraction)` but `fraction` is not a number')
return this.shiftAlong(this.length() * fraction, stepsPerMm)
}
/**
* Adds a smooth curve operation via cp2 to Point to
*
* @param {Point} cp2 - The end control Point
* @param {Point} to - The end point
* @return {Path} this - The Path instance
*/
Path.prototype.smurve = function (cp2, to) {
if (to instanceof Point !== true)
this.log.warn('Called `Path.smurve(cp2, to)` but `to` is not a `Point` object')
if (cp2 instanceof Point !== true)
this.log.warn('Called `Path.smurve(cp2, to)` but `cp2` is not a `Point` object')
// Retrieve cp1 from previous operation
const prevOp = this.ops.slice(-1).pop()
const cp1 = prevOp.cp2.rotate(180, prevOp.to)
this.ops.push({ type: 'curve', cp1, cp2, to })
return this
}
/**
* Adds a smooth curve operation without cp to Point to
*
* @return {Path} this - The Path instance
*/
Path.prototype.smurve_ = function (to) {
if (to instanceof Point !== true)
this.log.warn('Called `Path.smurve_(to)` but `to` is not a `Point` object')
// Retrieve cp1 from previous operation
const prevOp = this.ops.slice(-1).pop()
const cp1 = prevOp.cp2.rotate(180, prevOp.to)
const cp2 = to
this.ops.push({ type: 'curve', cp1, cp2, to })
return this
}
/**
* Splits path on point, and returns both halves as Path instances
*
* @param {Point} point - The Point to split this Path on
* @return {Array} halves - An array holding the two Path instances that make the split halves
*/
Path.prototype.split = function (point) {
if (point instanceof Point !== true)
this.log.error('Called `Path.split(point)` but `point` is not a `Point` object')
let divided = this.divide()
let firstHalf = []
let secondHalf = []
for (let pi = 0; pi < divided.length; pi++) {
let path = divided[pi]
if (path.ops[0].to.sitsRoughlyOn(point)) {
divided[pi].ops[0].to = point.copy()
if (pi > 0) {
divided[pi - 1].ops[1].to = point.copy()
}
firstHalf = divided.slice(0, pi)
secondHalf = divided.slice(pi)
break
}
if (path.ops[1].type === 'line') {
if (path.ops[1].to.sitsRoughlyOn(point)) {
pi++
firstHalf = divided.slice(0, pi)
secondHalf = divided.slice(pi)
break
} else if (pointOnLine(path.ops[0].to, path.ops[1].to, point)) {
firstHalf = divided.slice(0, pi)
firstHalf.push(new Path().__withLog(this.log).move(path.ops[0].to).line(point))
pi++
secondHalf = divided.slice(pi)
secondHalf.unshift(new Path().__withLog(this.log).move(point).line(path.ops[1].to))
break
}
} else if (path.ops[1].type === 'curve') {
let t = curveParameterFromPoint(
path.ops[0].to,
path.ops[1].cp1,
path.ops[1].cp2,
path.ops[1].to,
point
)
if (t !== false) {
let curve = new Bezier(
{ x: path.ops[0].to.x, y: path.ops[0].to.y },
{ x: path.ops[1].cp1.x, y: path.ops[1].cp1.y },
{ x: path.ops[1].cp2.x, y: path.ops[1].cp2.y },
{ x: path.ops[1].to.x, y: path.ops[1].to.y }
)
let split = curve.split(t)
firstHalf = divided.slice(0, pi)
firstHalf.push(
new Path()
.__withLog(this.log)
.move(new Point(split.left.points[0].x, split.left.points[0].y))
.curve(
new Point(split.left.points[1].x, split.left.points[1].y),
new Point(split.left.points[2].x, split.left.points[2].y),
point.copy()
)
)
pi++
secondHalf = divided.slice(pi)
secondHalf.unshift(
new Path()
.__withLog(this.log)
.move(point.copy())
.curve(
new Point(split.right.points[1].x, split.right.points[1].y),
new Point(split.right.points[2].x, split.right.points[2].y),
new Point(split.right.points[3].x, split.right.points[3].y)
)
)
break
}
}
}
firstHalf = firstHalf.length > 0 && firstHalf[0].ops.length > 1 ? __joinPaths(firstHalf) : null
secondHalf =
secondHalf.length > 0 && secondHalf[0].ops.length > 1 ? __joinPaths(secondHalf) : null
return [firstHalf, secondHalf]
}
/**
* Determines the angle (tangent) of this path at the given point. If the given point is a sharp corner of this path,
* this method returns the angle directly before the point.
*
* @param {Point} point - The Point to determine the angle of relative to this Path
* @return {number|false} the angle of degrees at that point or false if the given Point doesn't lie on this Path
*/
Path.prototype.angleAt = function (point) {
if (!(point instanceof Point))
this.log.error('Called `Path.angleAt(point)` but `point` is not a `Point` object')
let divided = this.divide()
for (let pi = 0; pi < divided.length; pi++) {
let path = divided[pi]
if (path.ops[1].type === 'line') {
if (pointOnLine(path.ops[0].to, path.ops[1].to, point)) {
return path.ops[0].to.angle(path.ops[1].to)
}
} else if (path.ops[1].type === 'curve') {
let t = curveParameterFromPoint(
path.ops[0].to,
path.ops[1].cp1,
path.ops[1].cp2,
path.ops[1].to,
point
)
if (t !== false) {
const curve = new Bezier(
{ x: path.ops[0].to.x, y: path.ops[0].to.y },
{ x: path.ops[1].cp1.x, y: path.ops[1].cp1.y },
{ x: path.ops[1].cp2.x, y: path.ops[1].cp2.y },
{ x: path.ops[1].to.x, y: path.ops[1].to.y }
)
let normal = curve.normal(t)
// atan2's first parameter is y, but we're swapping them because
// we're interested in the tangent angle, not normal
return (Math.atan2(normal.x, normal.y) / Math.PI) * 180
}
}
}
return false
}
/**
* Returns the startpoint of this path
*
* @return {Point} start - The start point
*/
Path.prototype.start = function () {
if (this.ops.length < 1 || typeof this.ops[0].to === 'undefined')
this.log.error('Called `Path.start()` but this path has no drawing operations')
return this.ops[0].to
}
/**
* Returns a cloned Path instance with a translate tranform applied
*
* @param {float} x - The X-value for the transform
* @param {float} y - The Y-value for the transform
* @return {Path} this - This Path instance
*/
Path.prototype.translate = function (x, y) {
if (typeof x !== 'number') this.log.warn('Called `Path.translate(x, y)` but `x` is not a number')
if (typeof y !== 'number') this.log.warn('Called `Path.translate(x, y)` but `y` is not a number')
let clone = this.clone()
for (let op of clone.ops) {
if (op.type !== 'close') {
op.to = op.to.translate(x, y)
}
if (op.type === 'curve') {
op.cp1 = op.cp1.translate(x, y)
op.cp2 = op.cp2.translate(x, y)
}
}
return clone
}
/**
* Removes self-intersections (overlap) from this Path instance
*
* @return {Path} this - This Path instance
*/
Path.prototype.trim = function () {
let chunks = this.divide()
for (let i = 0; i < chunks.length; i++) {
let firstCandidate = parseInt(i) + 2
let lastCandidate = parseInt(chunks.length) - 1
for (let j = firstCandidate; j < lastCandidate; j++) {
let intersections = chunks[i].intersects(chunks[j])
if (intersections.length > 0) {
let intersection = intersections.pop()
let trimmedStart = chunks.slice(0, i)
let trimmedEnd = chunks.slice(parseInt(j) + 1)
let glue = new Path().__withLog(this.log)
let first = true
for (let k of [i, j]) {
let ops = chunks[k].ops
if (ops[1].type === 'line') {
glue.line(intersection)
} else if (ops[1].type === 'curve') {
// handle curve
let curve = new Bezier(
{ x: ops[0].to.x, y: ops[0].to.y },
{ x: ops[1].cp1.x, y: ops[1].cp1.y },
{ x: ops[1].cp2.x, y: ops[1].cp2.y },
{ x: ops[1].to.x, y: ops[1].to.y }
)
let t = curveParameterFromPoint(
ops[0].to,
ops[1].cp1,
ops[1].cp2,
ops[1].to,
intersection
)
let split = curve.split(t)
let side
if (first) side = split.left
else side = split.right
glue.curve(
new Point(side.points[1].x, side.points[1].y),
new Point(side.points[2].x, side.points[2].y),
new Point(side.points[3].x, side.points[3].y)
)
}
first = false
}
let joint
if (trimmedStart.length > 0) joint = __joinPaths(trimmedStart).join(glue)
else joint = glue
if (trimmedEnd.length > 0) joint = joint.join(__joinPaths(trimmedEnd))
return joint.trim()
}
}
}
return this
}
/**
* Unhide the path
*
* @return {Path} path - The Path instance
*/
Path.prototype.unhide = function () {
this.hidden = false
return this
}
//////////////////////////////////////////////
// PRIVATE METHODS //
//////////////////////////////////////////////
/**
* Finds the bounding box of a path
*
* @private
* @return {object} this - The Path instance
*/
Path.prototype.__boundary = function () {
if (this.topOp) return this // Cached
let current
let topLeft = new Point(Infinity, Infinity)
let bottomRight = new Point(-Infinity, -Infinity)
let edges = []
for (let i in this.ops) {
let op = this.ops[i]
if (op.type === 'move' || op.type === 'line') {
if (op.to.x < topLeft.x) {
topLeft.x = op.to.x
edges['leftOp'] = i
}
if (op.to.y < topLeft.y) {
topLeft.y = op.to.y
edges['topOp'] = i
}
if (op.to.x > bottomRight.x) {
bottomRight.x = op.to.x
edges['rightOp'] = i
}
if (op.to.y > bottomRight.y) {
bottomRight.y = op.to.y
edges['bottomOp'] = i
}
} else if (op.type === 'curve') {
let bb = new Bezier(
{ x: current.x, y: current.y },
{ x: op.cp1.x, y: op.cp1.y },
{ x: op.cp2.x, y: op.cp2.y },
{ x: op.to.x, y: op.to.y }
).bbox()
if (bb.x.min < topLeft.x) {
topLeft.x = bb.x.min
edges['leftOp'] = i
}
if (bb.y.min < topLeft.y) {
topLeft.y = bb.y.min
edges['topOp'] = i
}
if (bb.x.max > bottomRight.x) {
bottomRight.x = bb.x.max
edges['rightOp'] = i
}
if (bb.y.max > bottomRight.y) {
bottomRight.y = bb.y.max
edges['bottomOp'] = i
}
}
if (op.to) current = op.to
}
this.topLeft = topLeft
this.bottomRight = bottomRight
for (let side of ['top', 'left', 'bottom', 'right']) {
let s = side + 'Op'
this[s] = this.ops[edges[s]]
this[s].from = this[s].type === 'move' ? this[s].to : this.ops[edges[s] - 1].to
}
return this
}
/**
* Finds intersections between this Path and a X or Y value
*
* @private
* @param {float} val - The X or Y value check for intersections
* @param {string} mode - Either 'x' or 'y' to indicate to check for intersections on the X or Y axis
* @return {Array} intersections - An array of Point objects where the Path intersects
*/
Path.prototype.__intersectsAxis = function (val = false, mode) {
let intersections = []
let lineStart = mode === 'x' ? new Point(val, -100000) : new Point(-10000, val)
let lineEnd = mode === 'x' ? new Point(val, 100000) : new Point(100000, val)
for (let path of this.divide()) {
if (path.ops[1].type === 'line') {
__addIntersectionsToArray(
linesIntersect(path.ops[0].to, path.ops[1].to, lineStart, lineEnd),
intersections
)
} else if (path.ops[1].type === 'curve') {
__addIntersectionsToArray(
lineIntersectsCurve(
lineStart,
lineEnd,
path.ops[0].to,
path.ops[1].cp1,
path.ops[1].cp2,
path.ops[1].to
),
intersections
)
}
}
return intersections
}
/**
* Adds the log method for a path not created through the proxy
*
* @private
* @return {object} this - The Path instance
*/
Path.prototype.__withLog = function (log = false) {
if (log) __addNonEnumProp(this, 'log', log)
return this
}
//////////////////////////////////////////////
// PUBLIC STATIC METHODS //
//////////////////////////////////////////////
/**
* Returns a ready-to-proxy that logs when things aren't exactly ok
*
* @private
* @param {object} paths - The paths object to proxy
* @param {object} log - The logging object
* @return {object} proxy - The object that is ready to be proxied
*/
export function pathsProxy(paths, log) {
return {
get: function (...args) {
return Reflect.get(...args)
},
set: (paths, name, value) => {
// Constructor checks
if (value instanceof Path !== true)
log.warn(`\`paths.${name}\` was set with a value that is not a \`Path\` object`)
try {
value.name = name
} catch (err) {
log.warn(`Could not set \`name\` property on \`paths.${name}\``)
}
return (paths[name] = value)
},
}
}
//////////////////////////////////////////////
// PRIVATE STATIC METHODS //
//////////////////////////////////////////////
/**
* Helper method to add intersection candidates to Array
*
* @private
* @param {Array|Object|false} candidates - One Point or an array of Points to check for intersection
* @param {Path} intersections - The Path instance to add as intersection if it has coordinates
* @return {Array} intersections - An array of Point objects where the paths intersect
*/
function __addIntersectionsToArray(candidates, intersections) {
if (!candidates) return
if (typeof candidates === 'object') {
if (typeof candidates.x === 'number') intersections.push(candidates)
else {
for (let candidate of candidates) intersections.push(candidate)
}
}
}
/**
* Converts a bezier-js instance to a path
*
* @private
* @param {BezierJs} bezier - A BezierJs instance
* @param {object} log - The logging object
* @return {object} path - A Path instance
*/
function __asPath(bezier, log = false) {
return new Path()
.__withLog(log)
.move(new Point(bezier.points[0].x, bezier.points[0].y))
.curve(
new Point(bezier.points[1].x, bezier.points[1].y),
new Point(bezier.points[2].x, bezier.points[2].y),
new Point(bezier.points[3].x, bezier.points[3].y)
)
.clean()
}
/**
* Returns the bounding box of multiple bounding boxes
*
* @private
* @param {Array} boxes - An Array of bounding box objects
* @return {object} bbox - The bounding box object holding a topLeft and bottomRight Point instance
*/
function __bbbbox(boxes) {
let minX = Infinity
let maxX = -Infinity
let minY = Infinity
let maxY = -Infinity
for (let box of boxes) {
if (box.topLeft.x < minX) minX = box.topLeft.x
if (box.topLeft.y < minY) minY = box.topLeft.y
if (box.bottomRight.x > maxX) maxX = box.bottomRight.x
if (box.bottomRight.y > maxY) maxY = box.bottomRight.y
}
return { topLeft: new Point(minX, minY), bottomRight: new Point(maxX, maxY) }
}
/**
* Combines path segments into a single path instance
*
* @private
* @param {Array} paths - An Array of Path objects
* @return {object} path - A Path instance
*/
function __combinePaths(...paths) {
const joint = new Path().__withLog(paths[0].log)
for (const path of paths) joint.ops.push(...path.ops)
return joint
}
/**
* Returns an object holding topLeft and bottomRight Points of the bounding box of a curve
*
* @private
* @param {BezierJs} curve - A BezierJs instance representing the curve
* @return {object} point - The bounding box object holding a topLeft and bottomRight Point instance
*/
function __curveBoundingBox(curve) {
let bb = curve.bbox()
return {
topLeft: new Point(bb.x.min, bb.y.min),
bottomRight: new Point(bb.x.max, bb.y.max),
}
}
/**
* Joins path segments together into one path
*
* @private
* @param {Array} paths - An Array of Path objects
* @return {object} path - A Path instance
*/
function __joinPaths(paths) {
let joint = new Path().__withLog(paths[0].log).move(paths[0].ops[0].to)
let current
for (let p of paths) {
for (let op of p.ops) {
if (op.type === 'curve') {
joint.curve(op.cp1, op.cp2, op.to)
} else if (op.type === 'noop') {
joint.noop(op.id)
} else if (op.type !== 'close') {
// We're using sitsRoughlyOn here to avoid miniscule line segments
if (current && !op.to.sitsRoughlyOn(current)) joint.line(op.to)
} else {
let err = 'Cannot join a closed path with another'
joint.log.error(err)
throw new Error(err)
}
if (op.to) current = op.to
}
}
return joint
}
/**
* Returns an object holding topLeft and bottomRight Points of the bounding box of a line
*
* @private
* @param {object} line - An object with a from and to Point instance that represents a line
* @return {object} point - The bounding box object holding a topLeft and bottomRight Point instance
*/
function __lineBoundingBox(line) {
let from = line.from
let to = line.to
if (from.x === to.x) {
if (from.y < to.y) return { topLeft: from, bottomRight: to }
else return { topLeft: to, bottomRight: from }
} else if (from.y === to.y) {
if (from.x < to.x) return { topLeft: from, bottomRight: to }
else return { topLeft: to, bottomRight: from }
} else if (from.x < to.x) {
if (from.y < to.y) return { topLeft: from, bottomRight: to }
else
return {
topLeft: new Point(from.x, to.y),
bottomRight: new Point(to.x, from.y),
}
} else if (from.x > to.x) {
if (from.y < to.y)
return {
topLeft: new Point(to.x, from.y),
bottomRight: new Point(from.x, to.y),
}
else
return {
topLeft: new Point(to.x, to.y),
bottomRight: new Point(from.x, from.y),
}
}
}
/**
* Offsets a line by distance
*
* @private
* @param {Point} from - The line's start point
* @param {Point} to - The line's end point
* @param {float} distance - The distane by which to offset the line
* @param {object} log - The logging object
* @return {object} this - The Path instance
*/
function __offsetLine(from, to, distance, log = false) {
if (from.x === to.x && from.y === to.y) return false
let angle = from.angle(to) - 90
return new Path().__withLog(log).move(from.shift(angle, distance)).line(to.shift(angle, distance))
}
/**
* Offsets a path by distance
*
* @private
* @param {Path} path - The Path to offset
* @param {float} distance - The distance to offset by
* @return {Path} offsetted - The offsetted Path instance
*/
function __pathOffset(path, distance, log) {
let offset = []
let current
let start = false
let closed = false
for (let i in path.ops) {
let op = path.ops[i]
if (op.type === 'line') {
let segment = __offsetLine(current, op.to, distance, path.log)
if (segment) offset.push(segment)
} else if (op.type === 'curve') {
// We need to avoid a control point sitting on top of start or end
// because that will break the offset in bezier-js
let cp1, cp2
if (current.sitsRoughlyOn(op.cp1)) {
cp1 = new Path().__withLog(path.log).move(current).curve(op.cp1, op.cp2, op.to)
cp1 = cp1.shiftAlong(cp1.length() > 2 ? 2 : cp1.length() / 10)
} else cp1 = op.cp1
if (op.cp2.sitsRoughlyOn(op.to)) {
cp2 = new Path().__withLog(path.log).move(op.to).curve(op.cp2, op.cp1, current)
cp2 = cp2.shiftAlong(cp2.length() > 2 ? 2 : cp2.length() / 10)
} else cp2 = op.cp2
let b = new Bezier(
{ x: current.x, y: current.y },
{ x: cp1.x, y: cp1.y },
{ x: cp2.x, y: cp2.y },
{ x: op.to.x, y: op.to.y }
)
for (let bezier of b.offset(distance)) {
const segment = __asPath(bezier, path.log)
if (segment) offset.push(segment)
}
} else if (op.type === 'close') closed = true
if (op.to) current = op.to
if (!start) start = current
}
let result
if (offset.length !== 0) {
result = __joinPaths(offset)
} else {
// degenerate case: Original path was likely short, so all the "if (segment)" checks returned false
// retry treating the path as a simple straight line from start to end
// note: do not call __joinPaths in this branch as this could result in "over-optimizing" this short path
let segment = __offsetLine(start, current, distance, path.log)
if (segment) {
result = segment
} else {
result = new Path().move(start).line(current)
log.warn(`Could not properly calculate offset path, the given path is likely too short.`)
}
}
return closed ? result.close() : result
}
/**
* Returns a Point that lies at distance along a cubic Bezier curve
*
* @private
* @param {float} distance - The distance to shift along the cubic Bezier curve
* @param {Bezier} bezier - The BezierJs instance
* @param {int} steps - The numer of steps per mm to walk the Bezier with
* @return {Point} point - The point at distance along the cubic Bezier curve
*/
function __shiftAlongBezier(distance, bezier, steps) {
let previous, next, t, thisLen
let len = 0
for (let i = 0; i <= steps; i++) {
t = i / steps
next = bezier.get(t)
next = new Point(next.x, next.y)
if (i > 0) {
thisLen = next.dist(previous)
if (len + thisLen > distance) return next
else len += thisLen
}
previous = next
}
}