UNPKG

@flatten-js/boolean-op

Version:
716 lines (596 loc) 26.9 kB
'use strict'; Object.defineProperty(exports, '__esModule', { value: true }); var core = require('@flatten-js/core'); /** * Created by Alex Bol on 12/02/2018. */ const NOT_VERTEX = 0; const START_VERTEX = 1; const END_VERTEX = 2; // const INSIDE = Flatten.INSIDE; // const OUTSIDE = Flatten.OUTSIDE; // const BOUNDARY = Flatten.BOUNDARY; // const OVERLAP_SAME = Flatten.OVERLAP_SAME; // const OVERLAP_OPPOSITE = Flatten.OVERLAP_OPPOSITE; const BOOLEAN_UNION = 1; const BOOLEAN_INTERSECT = 2; const BOOLEAN_SUBTRACT = 3; /** * Unify two polygons polygons and returns new polygon. <br/> * Point belongs to the resulted polygon if it belongs to the first OR to the second polygon * @param {Flatten.Polygon} polygon1 - first operand * @param {Flatten.Polygon} polygon2 - second operand * @returns {Flatten.Polygon} */ function unify(polygon1, polygon2) { let res_poly = booleanOpBinary(polygon1, polygon2, BOOLEAN_UNION); return res_poly; } /** * Subtract second polygon from the first and returns new polygon * Point belongs to the resulted polygon if it belongs to the first polygon AND NOT to the second polygon * @param {Flatten.Polygon} polygon1 - first operand * @param {Flatten.Polygon} polygon2 - second operand * @returns {Flatten.Polygon} */ function subtract(polygon1, polygon2) { let wrk_poly = polygon2.clone(); let wrk_poly_reversed = wrk_poly.reverse(); let res_poly = booleanOpBinary(polygon1, wrk_poly_reversed, BOOLEAN_SUBTRACT); return res_poly; } /** * Intersect two polygons and returns new polygon * Point belongs to the resultes polygon is it belongs to the first AND to the second polygon * @param {Flatten.Polygon} polygon1 - first operand * @param {Flatten.Polygon} polygon2 - second operand * @returns {Flatten.Polygon} */ function intersect(polygon1, polygon2) { let res_poly = booleanOpBinary(polygon1, polygon2, BOOLEAN_INTERSECT); return res_poly; } // function booleanOp(operands) // { // let res_poly = new Polygon(); // for (let [wrk_poly, op] of operands) { // res_poly = booleanOpBinary(res_poly, wrk_poly, op); // } // return res_poly; // } function booleanOpBinary(res_poly, wrk_poly, op) { return clip(res_poly, wrk_poly, op); } function clip(polygon1, polygon2, op) { let res_poly = polygon1.clone(); let wrk_poly = polygon2.clone(); // get intersection points let intersections = getIntersections(res_poly, wrk_poly); // sort intersection points sortIntersections(intersections); // split by intersection points splitByIntersections(res_poly, intersections.int_points1_sorted); splitByIntersections(wrk_poly, intersections.int_points2_sorted); // filter duplicated intersection points filterDuplicatedIntersections(intersections); // keep not intersected faces for further remove and merge let notIntersectedFacesRes = getNotIntersectedFaces(res_poly, intersections.int_points1); let notIntersectedFacesWrk = getNotIntersectedFaces(wrk_poly, intersections.int_points2); // calculate inclusion flag for not intersected faces calcInclusionForNotIntersectedFaces(notIntersectedFacesRes, wrk_poly); calcInclusionForNotIntersectedFaces(notIntersectedFacesWrk, res_poly); // initialize inclusion flags for edges incident to intersections initializeInclusionFlags(intersections.int_points1); initializeInclusionFlags(intersections.int_points2); // calculate inclusion flags only for edges incident to intersections calculateInclusionFlags(intersections.int_points1, polygon2); calculateInclusionFlags(intersections.int_points2, polygon1); // TODO: fix bondary conflicts // Set overlapping flags for boundary chains: SAME or OPPOSITE setOverlappingFlags(intersections); // remove not relevant chains between intersection points removeNotRelevantChains(res_poly, op, intersections.int_points1_sorted, true); removeNotRelevantChains(wrk_poly, op, intersections.int_points2_sorted, false); // remove not relevant not intersected faces from res_polygon and wrk_polygon // if op == UNION, remove faces that are included in wrk_polygon without intersection // if op == INTERSECT, remove faces that are not included into wrk_polygon removeNotRelevantNotIntersectedFaces(res_poly, notIntersectedFacesRes, op, true); removeNotRelevantNotIntersectedFaces(wrk_poly, notIntersectedFacesWrk, op, false); // add edges of wrk_poly into the edge container of res_poly copyWrkToRes(res_poly, wrk_poly, op, intersections.int_points2); // swap links from res_poly to wrk_poly and vice versa swapLinks(res_poly, wrk_poly, intersections); // remove old faces removeOldFaces(res_poly, intersections.int_points1); removeOldFaces(wrk_poly, intersections.int_points2); // restore faces restoreFaces(res_poly, intersections.int_points1, intersections.int_points2); restoreFaces(res_poly, intersections.int_points2, intersections.int_points1); // merge relevant not intersected faces from wrk_polygon to res_polygon // mergeRelevantNotIntersectedFaces(res_poly, wrk_poly); return res_poly; } function getIntersections(polygon1, polygon2) { let intersections = { int_points1: [], int_points2: [] }; // calculate intersections for (let edge1 of polygon1.edges) { // request edges of polygon2 in the box of edge1 let resp = polygon2.edges.search(edge1.box); // for each edge2 in response for (let edge2 of resp) { // calculate intersections between edge1 and edge2 let ip = edge1.shape.intersect(edge2.shape); // for each intersection point for (let pt of ip) { addToIntPoints(edge1, pt, intersections.int_points1); addToIntPoints(edge2, pt, intersections.int_points2); } } } return intersections; } function addToIntPoints(edge, pt, int_points) { let id = int_points.length; let split = edge.shape.split(pt); if (split.length === 0) return; // Means point does not belong to edge let len = 0; if (split.length === 1) { // Edge was not split if (edge.shape.start.equalTo(pt)) { len = 0; } else if (edge.shape.end.equalTo(pt)) { len = edge.shape.length; } } else { // Edge was split into to edges len = split[0].length; } let is_vertex = NOT_VERTEX; if (core.Utils.EQ(len, 0)) { is_vertex |= START_VERTEX; } if (core.Utils.EQ(len, edge.shape.length)) { is_vertex |= END_VERTEX; } // Fix intersection point which is end point of the last edge let arc_length = (is_vertex & END_VERTEX) && edge.next.arc_length === 0 ? 0 : edge.arc_length + len; int_points.push({ id: id, pt: pt, arc_length: arc_length, edge_before: edge, edge_after: undefined, face: edge.face, is_vertex: is_vertex }); } function sortIntersections(intersections) { if (intersections.int_points1.length === 0) return; // augment intersections with new sorted arrays // intersections.int_points1_sorted = intersections.int_points1.slice().sort(compareFn); // intersections.int_points2_sorted = intersections.int_points2.slice().sort(compareFn); intersections.int_points1_sorted = getSortedArray(intersections.int_points1); intersections.int_points2_sorted = getSortedArray(intersections.int_points2); } function getSortedArray(int_points) { let faceMap = new Map; let id = 0; // Create integer id's for faces for (let ip of int_points) { if (!faceMap.has(ip.face)) { faceMap.set(ip.face, id); id++; } } // Augment intersection points with face id's for (let ip of int_points) { ip.faceId = faceMap.get(ip.face); } // Clone and sort let int_points_sorted = int_points.slice().sort(compareFn); return int_points_sorted; } function compareFn(ip1, ip2) { // compare face id's if (ip1.faceId < ip2.faceId) { return -1; } if (ip1.faceId > ip2.faceId) { return 1; } // same face - compare arc_length if (core.Utils.LT(ip1.arc_length, ip2.arc_length)) { return -1; } if (core.Utils.GT(ip1.arc_length, ip2.arc_length)) { return 1; } return 0; } function splitByIntersections(polygon, int_points) { if (!int_points) return; for (let int_point of int_points) { let edge = int_point.edge_before; // recalculate vertex flag: it may be changed after previous split if (edge.shape.start.equalTo(int_point.pt)) { int_point.is_vertex |= START_VERTEX; } if (edge.shape.end.equalTo(int_point.pt)) { int_point.is_vertex |= END_VERTEX; } if (int_point.is_vertex & START_VERTEX) { // nothing to split int_point.edge_before = edge.prev; int_point.is_vertex = END_VERTEX; continue; } if (int_point.is_vertex & END_VERTEX) { // nothing to split continue; } let newEdge = polygon.addVertex(int_point.pt, edge); int_point.edge_before = newEdge; } for (let int_point of int_points) { int_point.edge_after = int_point.edge_before.next; } } function filterDuplicatedIntersections(intersections) { if (intersections.int_points1.length < 2) return; let do_squeeze = false; let int_point_ref1, int_point_ref2; let int_point_cur1, int_point_cur2; for (let i = 0; i < intersections.int_points1.length; i++) { int_point_ref1 = intersections.int_points1[i]; int_point_ref2 = intersections.int_points2[i]; if (int_point_ref1.id === -1 && int_point_ref2.id === -1) continue; for (let j=0; j < intersections.int_points1.length; j++) { if (j === i) continue; int_point_cur1 = intersections.int_points1[j]; int_point_cur2 = intersections.int_points2[j]; if (int_point_cur1.id === -1 && int_point_cur2.id === -1) continue; if (core.Utils.EQ(int_point_cur1.arc_length, int_point_ref1.arc_length) && core.Utils.EQ(int_point_cur2.arc_length, int_point_ref2.arc_length) && int_point_cur1.faceId === int_point_ref1.faceId && int_point_cur2.faceId === int_point_ref2.faceId && int_point_cur1.edge_before === int_point_ref1.edge_before && int_point_cur1.edge_after === int_point_ref1.edge_after && int_point_cur2.edge_before === int_point_ref2.edge_before && int_point_cur2.edge_after === int_point_ref2.edge_after) { int_point_cur1.id = -1; /* to be deleted */ int_point_cur2.id = -1; /* to be deleted */ do_squeeze = true; } } } if (do_squeeze) { intersections.int_points1 = intersections.int_points1.filter((int_point) => int_point.id >= 0); intersections.int_points2 = intersections.int_points2.filter((int_point) => int_point.id >= 0); // update id's intersections.int_points1.forEach((int_point, index) => int_point.id = index); intersections.int_points2.forEach((int_point, index) => int_point.id = index); // re-create sorted intersections.int_points1_sorted = []; intersections.int_points2_sorted = []; sortIntersections(intersections); } } function getNotIntersectedFaces(poly, int_points) { let notIntersected = []; for (let face of poly.faces) { if (!int_points.find((ip) => ip.face === face)) { notIntersected.push(face); } } return notIntersected; } function calcInclusionForNotIntersectedFaces(notIntersectedFaces, poly2) { for (let face of notIntersectedFaces) { face.first.bv = face.first.bvStart = face.first.bvEnd = undefined; face.first.setInclusion(poly2); } } function initializeInclusionFlags(int_points) { for (let int_point of int_points) { int_point.edge_before.bvStart = undefined; int_point.edge_before.bvEnd = undefined; int_point.edge_before.bv = undefined; int_point.edge_before.overlap = undefined; int_point.edge_after.bvStart = undefined; int_point.edge_after.bvEnd = undefined; int_point.edge_after.bv = undefined; int_point.edge_after.overlap = undefined; } for (let int_point of int_points) { int_point.edge_before.bvEnd = core.BOUNDARY; int_point.edge_after.bvStart = core.BOUNDARY; } } function calculateInclusionFlags(int_points, polygon) { for (let int_point of int_points) { int_point.edge_before.setInclusion(polygon); int_point.edge_after.setInclusion(polygon); } } function setOverlappingFlags(intersections) { let cur_face = undefined; let first_int_point_in_face = undefined; let next_int_point1 = undefined; let num_int_points = intersections.int_points1.length; for (let i = 0; i < num_int_points; i++) { let cur_int_point1 = intersections.int_points1_sorted[i]; // Find boundary chain in the polygon1 if (cur_int_point1.face !== cur_face) { // next chain started first_int_point_in_face = cur_int_point1; cur_face = cur_int_point1.face; } if (i + 1 === num_int_points) { // last int point in array next_int_point1 = first_int_point_in_face; } else if (intersections.int_points1_sorted[i + 1].face !== cur_face) { // last int point in chain next_int_point1 = first_int_point_in_face; } else { // not a last point in chain next_int_point1 = intersections.int_points1_sorted[i + 1]; } let edge_from1 = cur_int_point1.edge_after; let edge_to1 = next_int_point1.edge_before; if (!(edge_from1.bv === core.BOUNDARY && edge_to1.bv === core.BOUNDARY)) // not a boundary chain - skip continue; if (edge_from1 !== edge_to1) // one edge chain TODO: support complex case continue; /* Find boundary chain in polygon2 between same intersection points */ let cur_int_point2 = intersections.int_points2[cur_int_point1.id]; let next_int_point2 = intersections.int_points2[next_int_point1.id]; let edge_from2 = cur_int_point2.edge_after; let edge_to2 = next_int_point2.edge_before; /* if [edge_from2..edge_to2] is not a boundary chain, invert it */ /* check also that chain consist of one or two edges */ if (!(edge_from2.bv === core.BOUNDARY && edge_to2.bv === core.BOUNDARY && edge_from2 === edge_to2)) { cur_int_point2 = intersections.int_points2[next_int_point1.id]; next_int_point2 = intersections.int_points2[cur_int_point1.id]; edge_from2 = cur_int_point2.edge_after; edge_to2 = next_int_point2.edge_before; } if (!(edge_from2.bv === core.BOUNDARY && edge_to2.bv === core.BOUNDARY && edge_from2 === edge_to2)) continue; // not an overlapping chain - skip TODO: fix boundary conflict // Set overlapping flag - one-to-one case edge_from1.setOverlap(edge_from2); } } function removeNotRelevantChains(polygon, op, int_points, is_res_polygon) { if (!int_points) return; let cur_face = undefined; let first_int_point_in_face_num = undefined; let int_point_current; let int_point_next; for (let i = 0; i < int_points.length; i++) { int_point_current = int_points[i]; if (int_point_current.face !== cur_face) { // next face started first_int_point_in_face_num = i; cur_face = int_point_current.face; } if (cur_face.isEmpty()) // ?? continue; // Get next int point from the same face that current // Count how many duplicated points with same <x,y> in "points from" pull ? let int_points_from_pull_start = i; let int_points_from_pull_num = intPointsPullCount(int_points, i, cur_face); let next_int_point_num; if (int_points_from_pull_start + int_points_from_pull_num < int_points.length && int_points[int_points_from_pull_start + int_points_from_pull_num].face === int_point_current.face) { next_int_point_num = int_points_from_pull_start + int_points_from_pull_num; } else { // get first point from the same face next_int_point_num = first_int_point_in_face_num; } int_point_next = int_points[next_int_point_num]; /* Count how many duplicated points with same <x,y> in "points to" pull ? */ let int_points_to_pull_start = next_int_point_num; let int_points_to_pull_num = intPointsPullCount(int_points, int_points_to_pull_start, cur_face); let edge_from = int_point_current.edge_after; let edge_to = int_point_next.edge_before; if ((edge_from.bv === core.INSIDE && edge_to.bv === core.INSIDE && op === BOOLEAN_UNION) || (edge_from.bv === core.OUTSIDE && edge_to.bv === core.OUTSIDE && op === BOOLEAN_INTERSECT) || ((edge_from.bv === core.OUTSIDE || edge_to.bv === core.OUTSIDE) && op === BOOLEAN_SUBTRACT && !is_res_polygon) || ((edge_from.bv === core.INSIDE || edge_to.bv === core.INSIDE) && op === BOOLEAN_SUBTRACT && is_res_polygon) || (edge_from.bv === core.BOUNDARY && edge_to.bv === core.BOUNDARY && (edge_from.overlap & core.OVERLAP_SAME) && is_res_polygon) || (edge_from.bv === core.BOUNDARY && edge_to.bv === core.BOUNDARY && (edge_from.overlap & core.OVERLAP_OPPOSITE))) { polygon.removeChain(cur_face, edge_from, edge_to); /* update all points in "points from" pull */ for (let k = int_points_from_pull_start; k < int_points_from_pull_start + int_points_from_pull_num; k++) { int_points[k].edge_after = undefined; } /* update all points in "points to" pull */ for (let k = int_points_to_pull_start; k < int_points_to_pull_start + int_points_to_pull_num; k++) { int_points[k].edge_before = undefined; } } /* skip to the last point in "points from" group */ i += int_points_from_pull_num - 1; } } function intPointsPullCount(int_points, cur_int_point_num, cur_face) { let int_point_current; let int_point_next; let int_points_pull_num = 1; if (int_points.length == 1) return 1; int_point_current = int_points[cur_int_point_num]; for (let i = cur_int_point_num + 1; i < int_points.length; i++) { if (int_point_current.face != cur_face) { /* next face started */ break; } int_point_next = int_points[i]; if (!(int_point_next.pt.equalTo(int_point_current.pt) && int_point_next.edge_before === int_point_current.edge_before && int_point_next.edge_after === int_point_current.edge_after)) { break; /* next point is different - break and exit */ } int_points_pull_num++; /* duplicated intersection point - increase counter */ } return int_points_pull_num; } function copyWrkToRes(res_polygon, wrk_polygon, op, int_points) { for (let face of wrk_polygon.faces) { for (let edge of face) { res_polygon.edges.add(edge); } // If union - add face from wrk_polygon that is not intersected with res_polygon if ( (op === BOOLEAN_UNION || op == BOOLEAN_SUBTRACT) && int_points && int_points.find((ip) => (ip.face === face)) === undefined) { res_polygon.addFace(face.first, face.last); } } } function swapLinks(res_polygon, wrk_polygon, intersections) { if (intersections.int_points1.length === 0) return; for (let i = 0; i < intersections.int_points1.length; i++) { let int_point1 = intersections.int_points1[i]; let int_point2 = intersections.int_points2[i]; // Simple case - find continuation on the other polygon // Process edge from res_polygon if (int_point1.edge_before !== undefined && int_point1.edge_after === undefined) { // swap need if (int_point2.edge_before === undefined && int_point2.edge_after !== undefined) { // simple case // Connect edges int_point1.edge_before.next = int_point2.edge_after; int_point2.edge_after.prev = int_point1.edge_before; // Fill in missed links in intersection points int_point1.edge_after = int_point2.edge_after; int_point2.edge_before = int_point1.edge_before; } } // Process edge from wrk_polygon if (int_point2.edge_before !== undefined && int_point2.edge_after === undefined) { // swap need if (int_point1.edge_before === undefined && int_point1.edge_after !== undefined) { // simple case // Connect edges int_point2.edge_before.next = int_point1.edge_after; int_point1.edge_after.prev = int_point2.edge_before; // Complete missed links int_point2.edge_after = int_point1.edge_after; int_point1.edge_before = int_point2.edge_before; } } // Continuation not found - complex case // Continuation will be found on the same polygon. // It happens when intersection point is actually touching point // Polygon1 if (int_point1.edge_before !== undefined && int_point1.edge_after === undefined) { // still swap need for (let int_point of intersections.int_points1_sorted) { if (int_point === int_point1) continue; // skip same if (int_point.edge_before === undefined && int_point.edge_after !== undefined) { if (int_point.pt.equalTo(int_point1.pt)) { // Connect edges int_point1.edge_before.next = int_point.edge_after; int_point.edge_after.prev = int_point1.edge_before; // Complete missed links int_point1.edge_after = int_point.edge_after; int_point.edge_before = int_point1.edge_before; } } } } // Polygon2 if (int_point2.edge_before !== undefined && int_point2.edge_after === undefined) { // still swap need for (let int_point of intersections.int_points2_sorted) { if (int_point === int_point2) continue; // skip same if (int_point.edge_before === undefined && int_point.edge_after !== undefined) { if (int_point.pt.equalTo(int_point2.pt)) { // Connect edges int_point2.edge_before.next = int_point.edge_after; int_point.edge_after.prev = int_point2.edge_before; // Complete missed links int_point2.edge_after = int_point.edge_after; int_point.edge_before = int_point2.edge_before; } } } } } // Sanity check that no dead ends left } function removeOldFaces(polygon, int_points) { for (let int_point of int_points) { polygon.faces.delete(int_point.face); int_point.face = undefined; if (int_point.edge_before) int_point.edge_before.face = undefined; if (int_point.edge_after) int_point.edge_after.face = undefined; } } function restoreFaces(polygon, int_points, other_int_points) { // For each intersection point - create new face for (let int_point of int_points) { if (int_point.edge_before === undefined || int_point.edge_after === undefined) // completely deleted continue; if (int_point.face) // already restored continue; if (int_point.edge_after.face || int_point.edge_before.face) // Face already created. Possible case in duplicated intersection points continue; let first = int_point.edge_after; // face start let last = int_point.edge_before; // face end; let face = polygon.addFace(first, last); // Mark intersection points from the newly create face // to avoid multiple creation of the same face // Face was assigned to each edge of new face in addFace function for (let int_point_tmp of int_points) { if (int_point_tmp.edge_before && int_point_tmp.edge_after && int_point_tmp.edge_before.face === face && int_point_tmp.edge_after.face === face) { int_point_tmp.face = face; } } // Mark other intersection points as well for (let int_point_tmp of other_int_points) { if (int_point_tmp.edge_before && int_point_tmp.edge_after && int_point_tmp.edge_before.face === face && int_point_tmp.edge_after.face === face) { int_point_tmp.face = face; } } } } function removeNotRelevantNotIntersectedFaces(polygon, notIntersectedFaces, op, is_res_polygon) { for (let face of notIntersectedFaces) { let rel = face.first.bv; if (op === BOOLEAN_UNION && rel === core.INSIDE || op === BOOLEAN_SUBTRACT && rel === core.INSIDE && is_res_polygon || op === BOOLEAN_SUBTRACT && rel === core.OUTSIDE && !is_res_polygon || op === BOOLEAN_INTERSECT && rel === core.OUTSIDE) { polygon.deleteFace(face); } } } /** * Created by Alex Bol on 12/02/2018. */ exports.BOOLEAN_INTERSECT = BOOLEAN_INTERSECT; exports.BOOLEAN_SUBTRACT = BOOLEAN_SUBTRACT; exports.BOOLEAN_UNION = BOOLEAN_UNION; exports.addToIntPoints = addToIntPoints; exports.getSortedArray = getSortedArray; exports.intersect = intersect; exports.removeNotRelevantChains = removeNotRelevantChains; exports.removeOldFaces = removeOldFaces; exports.restoreFaces = restoreFaces; exports.splitByIntersections = splitByIntersections; exports.subtract = subtract; exports.unify = unify;