UNPKG

@fioprotocol/fiojs

Version:

FioJS is a Utility SDK for packing, signing and encryption functionality for the FIO blockchain. It is used by the FIO TypeScript SDK

226 lines (194 loc) 7.48 kB
const base58 = require('bs58') const assert = require('assert') const randomBytes = require('randombytes'); const hash = require('./hash'); module.exports = { random32ByteBuffer, addEntropy, cpuEntropy, entropyCount: () => entropyCount, checkDecode, checkEncode } let entropyPos = 0, entropyCount = 0 const externalEntropyArray = randomBytes(101) /** Additional forms of entropy are used. A week random number generator can run out of entropy. This should ensure even the worst random number implementation will be reasonably safe. @arg {number} [cpuEntropyBits = 0] generate entropy on the fly. This is not required, entropy can be added in advanced via addEntropy or initialize(). @arg {boolean} [safe = true] false for testing, otherwise this will be true to ensure initialize() was called. @return a random buffer obtained from the secure random number generator. Additional entropy is used. */ function random32ByteBuffer({cpuEntropyBits = 0, safe = true} = {}) { assert.equal(typeof cpuEntropyBits, 'number', 'cpuEntropyBits') assert.equal(typeof safe, 'boolean', 'boolean') if(safe) { assert(entropyCount >= 128, 'Call initialize() to add entropy') } // if(entropyCount > 0) { // console.log(`Additional private key entropy: ${entropyCount} events`) // } const hash_array = [] hash_array.push(randomBytes(32)) hash_array.push(Buffer.from(cpuEntropy(cpuEntropyBits))) hash_array.push(externalEntropyArray) hash_array.push(browserEntropy()) return hash.sha256(Buffer.concat(hash_array)) } /** Adds entropy. This may be called many times while the amount of data saved is accumulatively reduced to 101 integers. Data is retained in RAM for the life of this module. @example React <code> componentDidMount() { this.refs.MyComponent.addEventListener("mousemove", this.onEntropyEvent, {capture: false, passive: true}) } componentWillUnmount() { this.refs.MyComponent.removeEventListener("mousemove", this.onEntropyEvent); } onEntropyEvent = (e) => { if(e.type === 'mousemove') key_utils.addEntropy(e.pageX, e.pageY, e.screenX, e.screenY) else console.log('onEntropyEvent Unknown', e.type, e) } </code> */ function addEntropy(...ints) { assert.equal(externalEntropyArray.length, 101, 'externalEntropyArray') entropyCount += ints.length for(const i of ints) { const pos = entropyPos++ % 101 const i2 = externalEntropyArray[pos] += i if(i2 > 9007199254740991) externalEntropyArray[pos] = 0 } } /** This runs in just under 1 second and ensures a minimum of cpuEntropyBits bits of entropy are gathered. Based on more-entropy. @see https://github.com/keybase/more-entropy/blob/master/src/generator.iced @arg {number} [cpuEntropyBits = 128] @return {array} counts gathered by measuring variations in the CPU speed during floating point operations. */ function cpuEntropy(cpuEntropyBits = 128) { let collected = [] let lastCount = null let lowEntropySamples = 0 while(collected.length < cpuEntropyBits) { const count = floatingPointCount() if(lastCount != null) { const delta = count - lastCount if(Math.abs(delta) < 1) { lowEntropySamples++ continue } // how many bits of entropy were in this sample const bits = Math.floor(log2(Math.abs(delta)) + 1) if(bits < 4) { if(bits < 2) { lowEntropySamples++ } continue } collected.push(delta) } lastCount = count } if(lowEntropySamples > 10) { const pct = Number(lowEntropySamples / cpuEntropyBits * 100).toFixed(2) // Is this algorithm getting inefficient? console.warn(`WARN: ${pct}% low CPU entropy re-sampled`); } return collected } /** @private Count while performing floating point operations during a fixed time (7 ms for example). Using a fixed time makes this algorithm predictable in runtime. */ function floatingPointCount() { const workMinMs = 7 const d = Date.now() let i = 0, x = 0 while (Date.now() < d + workMinMs + 1) { x = Math.sin(Math.sqrt(Math.log(++i + x))) } return i } const log2 = x => Math.log(x) / Math.LN2 /** @private Attempt to gather and hash information from the browser's window, history, and supported mime types. For non-browser environments this simply includes secure random data. In any event, the information is re-hashed in a loop for 25 milliseconds seconds. @return {Buffer} 32 bytes */ function browserEntropy() { let entropyStr = Array(randomBytes(101)).join() try { entropyStr += (new Date()).toString() + " " + window.screen.height + " " + window.screen.width + " " + window.screen.colorDepth + " " + " " + window.screen.availHeight + " " + window.screen.availWidth + " " + window.screen.pixelDepth + navigator.language + " " + window.location + " " + window.history.length; for (let i = 0, mimeType; i < navigator.mimeTypes.length; i++) { mimeType = navigator.mimeTypes[i]; entropyStr += mimeType.description + " " + mimeType.type + " " + mimeType.suffixes + " "; } } catch(error) { //nodejs:ReferenceError: window is not defined entropyStr += hash.sha256((new Date()).toString()) } const b = new Buffer(entropyStr); entropyStr += b.toString('binary') + " " + (new Date()).toString(); let entropy = entropyStr; const start_t = Date.now(); while (Date.now() - start_t < 25) entropy = hash.sha256(entropy); return entropy; } /** @arg {Buffer} keyBuffer data @arg {string} keyType = sha256x2, K1, etc @return {string} checksum encoded base58 string */ function checkEncode(keyBuffer, keyType = null) { assert(Buffer.isBuffer(keyBuffer), 'expecting keyBuffer<Buffer>') if(keyType === 'sha256x2') { // legacy const checksum = hash.sha256(hash.sha256(keyBuffer)).slice(0, 4) return base58.encode(Buffer.concat([keyBuffer, checksum])) } else { const check = [keyBuffer] if(keyType) { check.push(Buffer.from(keyType)) } const checksum = hash.ripemd160(Buffer.concat(check)).slice(0, 4) return base58.encode(Buffer.concat([keyBuffer, checksum])) } } /** @arg {Buffer} keyString data @arg {string} keyType = sha256x2, K1, etc @return {string} checksum encoded base58 string */ function checkDecode(keyString, keyType = null) { assert(keyString != null, 'private key expected') const buffer = new Buffer(base58.decode(keyString)) const checksum = buffer.slice(-4) const key = buffer.slice(0, -4) let newCheck if(keyType === 'sha256x2') { // legacy newCheck = hash.sha256(hash.sha256(key)).slice(0, 4) // WIF (legacy) } else { const check = [key] if(keyType) { check.push(Buffer.from(keyType)) } newCheck = hash.ripemd160(Buffer.concat(check)).slice(0, 4) //PVT } if (checksum.toString() !== newCheck.toString()) { throw new Error('Invalid checksum, ' + `${checksum.toString('hex')} != ${newCheck.toString('hex')}` ) } return key }