UNPKG

@fdx/fxmath

Version:

A helper library for vector math and generative art

600 lines 18.5 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.V2 = exports.v2 = void 0; const common_1 = require("./common"); const v2 = (x, y) => { return new V2(x, y); }; exports.v2 = v2; class V2 { constructor(x, y) { this.x = x; this.y = y; } /** * Creates a vector from point A to point B. * @param {V2} a - The starting point. * @param {V2} b - The ending point. * @returns {V2} The resulting vector. */ static fromTo(a, b) { return v2(b.x - a.x, b.y - a.y); } /** * Checks if two vectors are identical. * @param {V2} a - First vector. * @param {V2} b - Second vector. * @returns {boolean} `true` if the vectors are the same, otherwise `false`. */ static sameLike(a, b) { return a.x === b.x && a.y === b.y; } /** * Computes the intersection of two line segments. * @param {V2} pA - First segment start. * @param {V2} pA2 - First segment end. * @param {V2} pB - Second segment start. * @param {V2} pB2 - Second segment end. * @returns {V2 | false} The intersection point or `false` if no intersection exists. */ static linesIntersect(pA, pA2, pB, pB2) { let denominator = (pB2.y - pB.y) * (pA2.x - pA.x) - (pB2.x - pB.x) * (pA2.y - pA.y); if (denominator === 0) return false; // Parallel lines let ua = ((pB2.x - pB.x) * (pA.y - pB.y) - (pB2.y - pB.y) * (pA.x - pB.x)) / denominator; let ub = ((pA2.x - pA.x) * (pA.y - pB.y) - (pA2.y - pA.y) * (pA.x - pB.x)) / denominator; if (ua < 0 || ua > 1 || ub < 0 || ub > 1) return false; let x = pA.x + ua * (pA2.x - pA.x); let y = pA.y + ua * (pA2.y - pA.y); return v2(x, y); } /** * Checks if a point is inside a polygon. * @param {V2} p - The point to check. * @param {V2[]} polygon - An array of vectors defining the polygon. * @returns {boolean} `true` if the point is inside, otherwise `false`. */ static isPointInPolygon(p, polygon) { let len = polygon.length; let inside = false; for (let i = 0, j = len - 1; i < len; j = i++) { if ((polygon[i].y > p.y) !== (polygon[j].y > p.y) && p.x < ((polygon[j].x - polygon[i].x) * (p.y - polygon[i].y)) / (polygon[j].y - polygon[i].y) + polygon[i].x) { inside = !inside; } } return inside; } /** * Creates a new 2D vector. * @param {number} x - The X-coordinate. * @param {number} y - The Y-coordinate. * @returns {V2} A new V2 instance. */ static create(x, y) { return new V2(x, y); } /** * Creates a vector using a magnitude and an angle. * @param {number} mag - The magnitude (length) of the vector. * @param {number} angle - The angle in radians. * @returns {V2} The resulting vector. */ static createByMagnitudeAndAngle(mag, angle) { return new V2(mag * Math.cos(angle), mag * Math.sin(angle)); } /** * Computes the angle of a vector in radians. * @param {V2} v - The vector. * @returns {number} The angle in radians. */ static getAngle(v) { return Math.atan2(v.y, v.x); } /** * Calculates the angle between two vectors. * @param {V2} a - First vector. * @param {V2} b - Second vector. * @returns {number} The angle in radians. */ static angleBetween(a, b) { return Math.acos(V2.dotprod(a, b) / (a.magnitude * b.magnitude)); } /** * Clones a vector. * @param {V2} v - The vector to clone. * @returns {V2} A new instance with the same values. */ static clone(v) { return new V2(v.x, v.y); } /** * Computes the magnitude (length) of a vector. * @param {V2} v - The vector. * @returns {number} The magnitude of the vector. */ static magnitude(v) { return v.magnitude; } /** * Computes the squared magnitude of a vector (avoiding square root for performance). * @param {V2} v - The vector. * @returns {number} The squared magnitude. */ static squareMagnitude(v) { return v.squareMagnitude; } /** * Computes the distance between two vectors. * @param {V2} v1 - First vector. * @param {V2} v2 - Second vector. * @returns {number} The distance between `v1` and `v2`. */ static distance(v1, v2) { return V2.subtract(v1, v2).magnitude; } /** * Adds two vectors. * @param {V2} v1 - First vector. * @param {V2} v2 - Second vector. * @returns {V2} The resulting vector. */ static add(v1, v2) { return new V2(v1.x + v2.x, v1.y + v2.y); } /** * Subtracts one vector from another. * @param {V2} v1 - The vector to subtract from. * @param {V2} v2 - The vector to subtract. * @returns {V2} The resulting vector. */ static subtract(v1, v2) { return new V2(v1.x - v2.x, v1.y - v2.y); } /** * Alias for `subtract`. * @param {V2} v1 - The vector to subtract from. * @param {V2} v2 - The vector to subtract. * @returns {V2} The resulting vector. */ static sub(v1, v2) { return V2.subtract(v1, v2); } /** * Multiplies a vector by a scalar. * @param {V2} vector - The vector to multiply. * @param {number} scalar - The scalar value. * @returns {V2} The scaled vector. */ static multiply(vector, scalar) { return new V2(vector.x * scalar, vector.y * scalar); } /** * Multiplies two vectors component-wise. (Hadamard-Produkt) * @param {V2} v0 - First vector. * @param {V2} v1 - Second vector. * @returns {V2} The resulting vector. */ static multVec(v0, v1) { return new V2(v0.x * v1.x, v0.y * v1.y); } /** * Divides a vector by a scalar. * @param {V2} v - The vector to divide. * @param {number} scalar - The scalar value. * @returns {V2} The resulting vector. */ static divide(v, scalar) { return V2.multiply(v, 1 / scalar); } /** * Computes the dot product of two vectors. * @param {V2} v1 - First vector. * @param {V2} v2 - Second vector. * @returns {number} The dot product. */ static dotprod(v1, v2) { return v1.x * v2.x + v1.y * v2.y; } /** * Alias for `dotprod`. * @param {V2} v1 - First vector. * @param {V2} v2 - Second vector. * @returns {number} The dot product. */ static dot(v1, v2) { return V2.dotprod(v1, v2); } /** * Computes the cross product of two vectors. * @param {V2} v1 - First vector. * @param {V2} v2 - Second vector. * @returns {number} The cross product (a scalar value). */ static crossprod(v1, v2) { return v1.x * v2.y - v1.y * v2.x; } /** * Returns the unit vector (normalized) of a given vector. * @param {V2} v - The vector to normalize. * @returns {V2} The unit vector. */ static unitVec(v) { return V2.divide(v, v.magnitude); } /** * Projects vector `v1` onto vector `v2`. * @param {V2} v1 - The vector to be projected. * @param {V2} v2 - The vector onto which `v1` is projected. * @returns {V2} The projected vector. */ static projectionFromTo(v1, v2) { let unitVector = V2.unitVec(v2); return V2.multiply(unitVector, V2.dotprod(v1, unitVector)); } /** * Rotates a vector around the origin. * @param {V2} v - The vector to rotate. * @param {number} angle - The rotation angle in radians. * @returns {V2} The rotated vector. */ static rotate(v, angle) { const cosA = Math.cos(angle); const sinA = Math.sin(angle); return new V2(v.x * cosA - v.y * sinA, v.x * sinA + v.y * cosA); } /** * Rotates a vector around a pivot point. * @param {V2} point - The vector to rotate. * @param {V2} pivot - The pivot point. * @param {number} angleRad - The rotation angle in radians. * @returns {V2} The rotated vector. */ static rotateAroundPivot(point, pivot, angleRad) { const cos = Math.cos(angleRad); const sin = Math.sin(angleRad); const dx = point.x - pivot.x; const dy = point.y - pivot.y; return new V2(cos * dx - sin * dy + pivot.x, sin * dx + cos * dy + pivot.y); } /** * Computes the left normal of a vector. * @param {V2} v - The vector. * @returns {V2} The left normal vector. */ static normalLeft(v) { return new V2(-v.y, v.x); } /** * Computes the right normal of a vector. * @param {V2} v - The vector. * @returns {V2} The right normal vector. */ static normalRight(v) { return new V2(v.y, -v.x); } /** * Computes the Manhattan distance between two vectors. * @param {V2} v1 - First vector. * @param {V2} v2 - Second vector. * @returns {number} The Manhattan distance. */ static manhattanDistance(v1, v2) { return Math.abs(v1.x - v2.x) + Math.abs(v1.y - v2.y); } /** * Linearly interpolates between two vectors. * @param {V2} v1 - First vector. * @param {V2} v2 - Second vector. * @param {number} amt - Interpolation amount (0 to 1). * @returns {V2} The interpolated vector. */ static lerp(v1, v2, amt) { return new V2((0, common_1.lerp)(v1.x, v2.x, amt), (0, common_1.lerp)(v1.y, v2.y, amt)); } /** * Creates a new copy of this vector. * @returns {V2} A new V2 instance with the same coordinates. */ clone() { return new V2(this.x, this.y); } /** * Checks if this vector is identical to another vector. * @param {V2} v - The vector to compare with. * @returns {boolean} `true` if both vectors have the same coordinates, otherwise `false`. */ sameLike(v) { return this.x === v.x && this.y === v.y; } /** * Alias for `clone()`. * @returns {V2} A new V2 instance with the same coordinates. */ copy() { return this.clone(); } /** * Gets the angle of the vector in radians. * @returns {number} The angle in radians. */ get angle() { return Math.atan2(this.y, this.x); } /** * Sets the angle of the vector while keeping its magnitude. * @param {number} rad - The new angle in radians. */ set angle(rad) { let mag = this.magnitude; this.x = mag * Math.cos(rad); this.y = mag * Math.sin(rad); } /** * Sets the angle of the vector while keeping its magnitude. * @param {number} rad - The new angle in radians. * @returns {this} The updated vector. */ setAngle(rad) { let mag = this.magnitude; this.x = mag * Math.cos(rad); this.y = mag * Math.sin(rad); return this; } /** * Gets the angle of the vector in degrees. * @returns {number} The angle in degrees. */ get degree() { return (360 / (2 * Math.PI)) * Math.atan2(this.y, this.x); } /** * Computes the right-hand normal (perpendicular) vector. * @returns {this} The updated vector. */ get toNormalRight() { let x = -this.y; let y = this.x; this.x = x; this.y = y; return this; } /** * Computes the left-hand normal (perpendicular) vector. * @returns {this} The updated vector. */ get toNormalLeft() { let x = this.y; let y = -this.x; this.x = x; this.y = y; return this; } /** * Sets the angle of the vector in degrees. * @param {number} degree - The new angle in degrees. */ set degree(degree) { let rad = (Math.PI * 2 / 360) * degree; this.setAngle(rad); } /** * Sets the angle of the vector in degrees. * @param {number} degree - The new angle in degrees. * @returns {this} The updated vector. */ setDegree(degree) { let rad = (Math.PI * 2 / 360) * degree; return this.setAngle(rad); } /** * Gets the magnitude (length) of the vector. * @returns {number} The vector's magnitude. */ get magnitude() { return Math.sqrt(this.x * this.x + this.y * this.y); } /** * Alias for `magnitude`. * @returns {number} The vector's magnitude. */ get length() { return this.magnitude; } /** * Gets the squared magnitude of the vector. * Useful for performance optimization when the actual magnitude is not needed. * @returns {number} The squared magnitude. */ get squareMagnitude() { return this.x * this.x + this.y * this.y; } /** * Computes the Euclidean distance from this vector to another vector. * @param {V2} v - The other vector. * @returns {number} The distance between the two vectors. */ distance(v) { return V2.subtract(this, v).magnitude; } /** * Normalizes the vector to a unit vector (magnitude of 1). * @returns {V2} The normalized vector. */ unitVec() { return this.divide(this.magnitude); } /** * Adds another vector to this vector. * @param {V2} v - The vector to add. * @returns {this} The updated vector. */ add(v) { this.x += v.x; this.y += v.y; return this; } /** * Adds a random offset to the vector within a specified range. * @param {number} rand - The maximum random deviation per axis. * @returns {this} The updated vector. */ addRnd(rand) { this.x += (0, common_1.rnd)(-rand, rand); this.y += (0, common_1.rnd)(-rand, rand); return this; } /** * Subtracts another vector from this vector. * @param {V2} v - The vector to subtract. * @returns {this} The updated vector. */ subtract(v) { this.x -= v.x; this.y -= v.y; return this; } /** * Alias for `subtract()`. * @param {V2} v - The vector to subtract. * @returns {this} The updated vector. */ sub(v) { return this.subtract(v); } /** * Multiplies this vector by a scalar. * @param {number} scalar - The scalar value. * @returns {this} The updated vector. */ multiply(scalar) { this.x *= scalar; this.y *= scalar; return this; } /** * Multiplies this vector component-wise with another vector. * @param {V2} v - The vector to multiply by. * @returns {this} The updated vector. */ multVec(v) { this.x *= v.x; this.y *= v.y; return this; } /** * Divides this vector by a scalar. * @param {number} scalar - The scalar divisor. * @returns {this} The updated vector. */ divide(scalar) { return this.multiply(1 / scalar); } /** * Computes the dot product with another vector. * @param {V2} v - The other vector. * @returns {number} The dot product. */ dotprod(v) { return this.x * v.x + this.y * v.y; } /** * Alias for `dotprod()`. * @param {V2} v - The other vector. * @returns {number} The dot product. */ dot(v) { return this.dotprod(v); } /** * Computes the cross product with another vector. * @param {V2} v - The other vector. * @returns {number} The cross product (a scalar). */ crossprod(v) { return this.x * v.y - this.y * v.x; } /** * Rotates this vector around the origin (0,0). * @param {number} angle - The rotation angle in radians. * @returns {this} The updated vector after rotation. */ rotate(angle) { return this.rotateAroundPivot(v2(0, 0), angle); } /** * Rotates this vector around a given pivot point. * @param {V2} pivot - The pivot point around which the vector rotates. * @param {number} angleRad - The rotation angle in radians. * @returns {this} The updated vector after rotation. */ rotateAroundPivot(pivot, angleRad) { const cos = Math.cos(angleRad); const sin = Math.sin(angleRad); const dx = this.x - pivot.x; const dy = this.y - pivot.y; const x = cos * dx - sin * dy + pivot.x; const y = sin * dx + cos * dy + pivot.y; this.x = x; this.y = y; return this; } /** * Computes the left-hand normal (perpendicular) of this vector. * The result is a vector rotated 90 degrees counterclockwise. * @returns {this} The updated vector. */ toNormal() { let x = -this.y; let y = this.x; this.x = x; this.y = y; return this; } /** * Computes the left-hand normal (perpendicular) of this vector. * The resulting vector is rotated 90 degrees counterclockwise. * @returns {V2} A new vector that is perpendicular to this vector. */ normal() { return new V2(-this.y, this.x); } /** * Linearly interpolates between this vector and another vector. * @param {V2} v - The target vector. * @param {number} amt - The interpolation factor (0 to 1). * @returns {this} The updated vector after interpolation. */ lerp(v, amt) { let res = V2.lerp(this, v, amt); this.x = res.x; this.y = res.y; return this; } /** * Floors the values of the vector components (rounds down to nearest integer). * Uses bitwise OR to optimize performance. * @returns {this} The updated vector with floored values. */ floorValues() { this.x = Math.floor(this.x); this.y = Math.floor(this.y); return this; } /** * Checks if this vector is inside a given polygon. * @param {V2[]} polygon - An array of vectors representing the polygon's vertices. * @returns {boolean} `true` if the vector is inside the polygon, otherwise `false`. */ isInPolygon(polygon) { return V2.isPointInPolygon(this, polygon); } } exports.V2 = V2; //# sourceMappingURL=v2.js.map