@emmahyde/thinking-patterns
Version:
MCP server combining systematic thinking, mental models, debugging approaches, and stochastic algorithms for comprehensive cognitive pattern support
15 lines (14 loc) • 1.05 kB
JavaScript
import { z } from 'zod';
/**
* Stochastic Algorithm Schema
*
* Defines the structure for probabilistic algorithms used in decision-making
* under uncertainty, including Monte Carlo methods, simulated annealing,
* and other stochastic optimization techniques.
*/
export const StochasticAlgorithmSchema = z.object({
algorithm: z.string().min(1).describe("The name of the stochastic algorithm to be used (e.g., 'Monte Carlo Tree Search', 'Simulated Annealing')."),
problem: z.string().min(1).describe("A formal description of the problem to be solved, including the state space, actions, and objective function if applicable."),
parameters: z.record(z.unknown()).optional().describe("Algorithm-specific parameters. For MCTS, this could be {'simulations': 1000, 'exploration_constant': 1.41}. For Simulated Annealing, {'initial_temp': 1000, 'cooling_rate': 0.995}."),
result: z.string().optional().describe("The output of the algorithm, which could be an optimal policy, a selected action, a predicted value, or a solution path.")
});