UNPKG

@emmahyde/thinking-patterns

Version:

MCP server combining systematic thinking, mental models, debugging approaches, and stochastic algorithms for comprehensive cognitive pattern support

15 lines (14 loc) 1.05 kB
import { z } from 'zod'; /** * Stochastic Algorithm Schema * * Defines the structure for probabilistic algorithms used in decision-making * under uncertainty, including Monte Carlo methods, simulated annealing, * and other stochastic optimization techniques. */ export const StochasticAlgorithmSchema = z.object({ algorithm: z.string().min(1).describe("The name of the stochastic algorithm to be used (e.g., 'Monte Carlo Tree Search', 'Simulated Annealing')."), problem: z.string().min(1).describe("A formal description of the problem to be solved, including the state space, actions, and objective function if applicable."), parameters: z.record(z.unknown()).optional().describe("Algorithm-specific parameters. For MCTS, this could be {'simulations': 1000, 'exploration_constant': 1.41}. For Simulated Annealing, {'initial_temp': 1000, 'cooling_rate': 0.995}."), result: z.string().optional().describe("The output of the algorithm, which could be an optimal policy, a selected action, a predicted value, or a solution path.") });