@elpassion/semantic-chunking
Version:
Semantically create chunks from large texts. Useful for workflows involving large language models (LLMs).
80 lines (68 loc) • 2.75 kB
JavaScript
// ------------------------
// -- example-chunkit.js --
// -------------------------------------------------------------------------------
// this is an example of how to use the chunkit function
// first we import the chunkit function and LocalEmbeddingModel class
// then we initialize the model once with dependency injection for transformers
// then we setup the documents array with text files
// then we call the chunkit function with the documents array, model, and options object
// the options object is optional, use it to customize the chunking process
// -------------------------------------------------------------------------------
import { LocalEmbeddingModel, chunkit } from "../chunkit.js"; // this is typically just "import { LocalEmbeddingModel, chunkit } from 'semantic-chunking';", but this is a local test
import { env, pipeline, AutoTokenizer } from "@huggingface/transformers";
import fs from "fs";
import { fileURLToPath } from "url";
import { dirname, resolve } from "path";
// Get current file's directory
const __filename = fileURLToPath(import.meta.url);
const __dirname = dirname(__filename);
// initialize documents array
let documents = [];
let textFiles = ["example.txt", "different.txt", "similar.txt"].map((file) =>
resolve(__dirname, file)
);
// read each text file and add it to the documents array
for (const textFile of textFiles) {
documents.push({
document_name: textFile,
document_text: await fs.promises.readFile(textFile, "utf8"),
});
}
// start timing
const startTime = performance.now();
// Create transformers object for dependency injection
const transformers = { env, pipeline, AutoTokenizer };
// Initialize the model once with dependency injection
const model = new LocalEmbeddingModel(transformers);
await model.initialize(
"Xenova/all-MiniLM-L6-v2", // model name
"q8", // dtype
"../models", // localModelPath
"../models" // modelCacheDir
);
let myTestChunks = await chunkit(
documents,
model, // Pass the initialized model
{
logging: false,
maxTokenSize: 300,
similarityThreshold: 0.5,
dynamicThresholdLowerBound: 0.4,
dynamicThresholdUpperBound: 0.8,
numSimilaritySentencesLookahead: 3,
combineChunks: true, // enable rebalancing
combineChunksSimilarityThreshold: 0.7,
returnTokenLength: true,
returnEmbedding: false,
}
);
// end timeing
const endTime = performance.now();
// calculate tracked time in seconds
let trackedTimeSeconds = (endTime - startTime) / 1000;
trackedTimeSeconds = parseFloat(trackedTimeSeconds.toFixed(2));
console.log("\n\n");
console.log("myTestChunks:");
console.log(myTestChunks);
console.log("length: " + myTestChunks.length);
console.log("trackedTimeSeconds: " + trackedTimeSeconds);