@dxzmpk/js-algorithms-data-structures
Version:
Algorithms and data-structures implemented on JavaScript
287 lines (248 loc) • 7.06 kB
JavaScript
import Comparator from '../../utils/comparator/Comparator';
/**
* Parent class for Min and Max Heaps.
*/
export default class Heap {
/**
* @constructs Heap
* @param {Function} [comparatorFunction]
*/
constructor(comparatorFunction) {
if (new.target === Heap) {
throw new TypeError('Cannot construct Heap instance directly');
}
// Array representation of the heap.
this.heapContainer = [];
this.compare = new Comparator(comparatorFunction);
}
/**
* @param {number} parentIndex
* @return {number}
*/
getLeftChildIndex(parentIndex) {
return (2 * parentIndex) + 1;
}
/**
* @param {number} parentIndex
* @return {number}
*/
getRightChildIndex(parentIndex) {
return (2 * parentIndex) + 2;
}
/**
* @param {number} childIndex
* @return {number}
*/
getParentIndex(childIndex) {
return Math.floor((childIndex - 1) / 2);
}
/**
* @param {number} childIndex
* @return {boolean}
*/
hasParent(childIndex) {
return this.getParentIndex(childIndex) >= 0;
}
/**
* @param {number} parentIndex
* @return {boolean}
*/
hasLeftChild(parentIndex) {
return this.getLeftChildIndex(parentIndex) < this.heapContainer.length;
}
/**
* @param {number} parentIndex
* @return {boolean}
*/
hasRightChild(parentIndex) {
return this.getRightChildIndex(parentIndex) < this.heapContainer.length;
}
/**
* @param {number} parentIndex
* @return {*}
*/
leftChild(parentIndex) {
return this.heapContainer[this.getLeftChildIndex(parentIndex)];
}
/**
* @param {number} parentIndex
* @return {*}
*/
rightChild(parentIndex) {
return this.heapContainer[this.getRightChildIndex(parentIndex)];
}
/**
* @param {number} childIndex
* @return {*}
*/
parent(childIndex) {
return this.heapContainer[this.getParentIndex(childIndex)];
}
/**
* @param {number} indexOne
* @param {number} indexTwo
*/
swap(indexOne, indexTwo) {
const tmp = this.heapContainer[indexTwo];
this.heapContainer[indexTwo] = this.heapContainer[indexOne];
this.heapContainer[indexOne] = tmp;
}
/**
* @return {*}
*/
peek() {
if (this.heapContainer.length === 0) {
return null;
}
return this.heapContainer[0];
}
/**
* @return {*}
*/
poll() {
if (this.heapContainer.length === 0) {
return null;
}
if (this.heapContainer.length === 1) {
return this.heapContainer.pop();
}
const item = this.heapContainer[0];
// Move the last element from the end to the head.
this.heapContainer[0] = this.heapContainer.pop();
this.heapifyDown();
return item;
}
/**
* @param {*} item
* @return {Heap}
*/
add(item) {
this.heapContainer.push(item);
this.heapifyUp();
return this;
}
/**
* @param {*} item
* @param {Comparator} [comparator]
* @return {Heap}
*/
remove(item, comparator = this.compare) {
// Find number of items to remove.
const numberOfItemsToRemove = this.find(item, comparator).length;
for (let iteration = 0; iteration < numberOfItemsToRemove; iteration += 1) {
// We need to find item index to remove each time after removal since
// indices are being changed after each heapify process.
const indexToRemove = this.find(item, comparator).pop();
// If we need to remove last child in the heap then just remove it.
// There is no need to heapify the heap afterwards.
if (indexToRemove === (this.heapContainer.length - 1)) {
this.heapContainer.pop();
} else {
// Move last element in heap to the vacant (removed) position.
this.heapContainer[indexToRemove] = this.heapContainer.pop();
// Get parent.
const parentItem = this.parent(indexToRemove);
// If there is no parent or parent is in correct order with the node
// we're going to delete then heapify down. Otherwise heapify up.
if (
this.hasLeftChild(indexToRemove)
&& (
!parentItem
|| this.pairIsInCorrectOrder(parentItem, this.heapContainer[indexToRemove])
)
) {
this.heapifyDown(indexToRemove);
} else {
this.heapifyUp(indexToRemove);
}
}
}
return this;
}
/**
* @param {*} item
* @param {Comparator} [comparator]
* @return {Number[]}
*/
find(item, comparator = this.compare) {
const foundItemIndices = [];
for (let itemIndex = 0; itemIndex < this.heapContainer.length; itemIndex += 1) {
if (comparator.equal(item, this.heapContainer[itemIndex])) {
foundItemIndices.push(itemIndex);
}
}
return foundItemIndices;
}
/**
* @return {boolean}
*/
isEmpty() {
return !this.heapContainer.length;
}
/**
* @return {string}
*/
toString() {
return this.heapContainer.toString();
}
/**
* @param {number} [customStartIndex]
*/
heapifyUp(customStartIndex) {
// Take the last element (last in array or the bottom left in a tree)
// in the heap container and lift it up until it is in the correct
// order with respect to its parent element.
let currentIndex = customStartIndex || this.heapContainer.length - 1;
while (
this.hasParent(currentIndex)
&& !this.pairIsInCorrectOrder(this.parent(currentIndex), this.heapContainer[currentIndex])
) {
this.swap(currentIndex, this.getParentIndex(currentIndex));
currentIndex = this.getParentIndex(currentIndex);
}
}
/**
* @param {number} [customStartIndex]
*/
heapifyDown(customStartIndex = 0) {
// Compare the parent element to its children and swap parent with the appropriate
// child (smallest child for MinHeap, largest child for MaxHeap).
// Do the same for next children after swap.
let currentIndex = customStartIndex;
let nextIndex = null;
while (this.hasLeftChild(currentIndex)) {
if (
this.hasRightChild(currentIndex)
&& this.pairIsInCorrectOrder(this.rightChild(currentIndex), this.leftChild(currentIndex))
) {
nextIndex = this.getRightChildIndex(currentIndex);
} else {
nextIndex = this.getLeftChildIndex(currentIndex);
}
if (this.pairIsInCorrectOrder(
this.heapContainer[currentIndex],
this.heapContainer[nextIndex],
)) {
break;
}
this.swap(currentIndex, nextIndex);
currentIndex = nextIndex;
}
}
/**
* Checks if pair of heap elements is in correct order.
* For MinHeap the first element must be always smaller or equal.
* For MaxHeap the first element must be always bigger or equal.
*
* @param {*} firstElement
* @param {*} secondElement
* @return {boolean}
*/
/* istanbul ignore next */
pairIsInCorrectOrder(firstElement, secondElement) {
throw new Error(`
You have to implement heap pair comparision method
for ${firstElement} and ${secondElement} values.
`);
}
}