@dxzmpk/js-algorithms-data-structures
Version:
Algorithms and data-structures implemented on JavaScript
65 lines (53 loc) • 1.96 kB
JavaScript
import combineWithoutRepetitions from '../combineWithoutRepetitions';
import factorial from '../../../math/factorial/factorial';
import pascalTriangle from '../../../math/pascal-triangle/pascalTriangle';
describe('combineWithoutRepetitions', () => {
it('should combine string without repetitions', () => {
expect(combineWithoutRepetitions(['A', 'B'], 3)).toEqual([]);
expect(combineWithoutRepetitions(['A', 'B'], 1)).toEqual([
['A'],
['B'],
]);
expect(combineWithoutRepetitions(['A'], 1)).toEqual([
['A'],
]);
expect(combineWithoutRepetitions(['A', 'B'], 2)).toEqual([
['A', 'B'],
]);
expect(combineWithoutRepetitions(['A', 'B', 'C'], 2)).toEqual([
['A', 'B'],
['A', 'C'],
['B', 'C'],
]);
expect(combineWithoutRepetitions(['A', 'B', 'C'], 3)).toEqual([
['A', 'B', 'C'],
]);
expect(combineWithoutRepetitions(['A', 'B', 'C', 'D'], 3)).toEqual([
['A', 'B', 'C'],
['A', 'B', 'D'],
['A', 'C', 'D'],
['B', 'C', 'D'],
]);
expect(combineWithoutRepetitions(['A', 'B', 'C', 'D', 'E'], 3)).toEqual([
['A', 'B', 'C'],
['A', 'B', 'D'],
['A', 'B', 'E'],
['A', 'C', 'D'],
['A', 'C', 'E'],
['A', 'D', 'E'],
['B', 'C', 'D'],
['B', 'C', 'E'],
['B', 'D', 'E'],
['C', 'D', 'E'],
]);
const combinationOptions = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'];
const combinationSlotsNumber = 4;
const combinations = combineWithoutRepetitions(combinationOptions, combinationSlotsNumber);
const n = combinationOptions.length;
const r = combinationSlotsNumber;
const expectedNumberOfCombinations = factorial(n) / (factorial(r) * factorial(n - r));
expect(combinations.length).toBe(expectedNumberOfCombinations);
// This one is just to see one of the way of Pascal's triangle application.
expect(combinations.length).toBe(pascalTriangle(n)[r]);
});
});