UNPKG

@dxzmpk/js-algorithms-data-structures

Version:

Algorithms and data-structures implemented on JavaScript

21 lines (11 loc) 1.92 kB
# Horner's Method In mathematics, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation. With this method, it is possible to evaluate a polynomial with only `n` additions and `n` multiplications. Hence, its storage requirements are `n` times the number of bits of `x`. Horner's method can be based on the following identity: ![Horner's rule](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a576e42d875496f8b0f0dda5ebff7c2415532e4) This identity is called _Horner's rule_. To solve the right part of the identity above, for a given `x`, we start by iterating through the polynomial from the inside out, accumulating each iteration result. After `n` iterations, with `n` being the order of the polynomial, the accumulated result gives us the polynomial evaluation. **Using the polynomial:** `4 * x^4 + 2 * x^3 + 3 * x^2 + x^1 + 3`, a traditional approach to evaluate it at `x = 2`, could be representing it as an array `[3, 1, 3, 2, 4]` and iterate over it saving each iteration value at an accumulator, such as `acc += pow(x=2, index) * array[index]`. In essence, each power of a number (`pow`) operation is `n-1` multiplications. So, in this scenario, a total of `14` operations would have happened, composed of `4` additions, `5` multiplications, and `5` pows (we're assuming that each power is calculated by repeated multiplication). Now, **using the same scenario but with Horner's rule**, the polynomial can be re-written as `x * (x * (x * (4 * x + 2) + 3) + 1) + 3`, representing it as `[4, 2, 3, 1, 3]` it is possible to save the first iteration as `acc = arr[0] * (x=2) + arr[1]`, and then finish iterations for `acc *= (x=2) + arr[index]`. In the same scenario but using Horner's rule, a total of `10` operations would have happened, composed of only `4` additions and `4` multiplications. ## References - [Wikipedia](https://en.wikipedia.org/wiki/Horner%27s_method)