UNPKG

@dxzmpk/js-algorithms-data-structures

Version:

Algorithms and data-structures implemented on JavaScript

59 lines (47 loc) 1.74 kB
import ComplexNumber from '../complex-number/ComplexNumber'; const CLOSE_TO_ZERO_THRESHOLD = 1e-10; /** * Inverse Discrete Fourier Transform (IDFT): frequencies to time. * * Time complexity: O(N^2) * * @param {ComplexNumber[]} frequencies - Frequencies summands of the final signal. * @param {number} zeroThreshold - Threshold that is used to convert real and imaginary numbers * to zero in case if they are smaller then this. * * @return {number[]} - Discrete amplitudes distributed in time. */ export default function inverseDiscreteFourierTransform( frequencies, zeroThreshold = CLOSE_TO_ZERO_THRESHOLD, ) { const N = frequencies.length; const amplitudes = []; // Go through every discrete point of time. for (let timer = 0; timer < N; timer += 1) { // Compound amplitude at current time. let amplitude = new ComplexNumber(); // Go through all discrete frequencies. for (let frequency = 0; frequency < N; frequency += 1) { const currentFrequency = frequencies[frequency]; // Calculate rotation angle. const rotationAngle = (2 * Math.PI) * frequency * (timer / N); // Remember that e^ix = cos(x) + i * sin(x); const frequencyContribution = new ComplexNumber({ re: Math.cos(rotationAngle), im: Math.sin(rotationAngle), }).multiply(currentFrequency); amplitude = amplitude.add(frequencyContribution); } // Close to zero? You're zero. if (Math.abs(amplitude.re) < zeroThreshold) { amplitude.re = 0; } if (Math.abs(amplitude.im) < zeroThreshold) { amplitude.im = 0; } // Add current frequency signal to the list of compound signals. amplitudes[timer] = amplitude.re; } return amplitudes; }