@dxzmpk/js-algorithms-data-structures
Version:
Algorithms and data-structures implemented on JavaScript
254 lines (222 loc) • 8.06 kB
JavaScript
import { getPixel, setPixel } from '../utils/imageData';
/**
* The seam is a sequence of pixels (coordinates).
* @typedef {PixelCoordinate[]} Seam
*/
/**
* Energy map is a 2D array that has the same width and height
* as the image the map is being calculated for.
* @typedef {number[][]} EnergyMap
*/
/**
* The metadata for the pixels in the seam.
* @typedef {Object} SeamPixelMeta
* @property {number} energy - the energy of the pixel.
* @property {PixelCoordinate} coordinate - the coordinate of the pixel.
* @property {?PixelCoordinate} previous - the previous pixel in a seam.
*/
/**
* Type that describes the image size (width and height)
* @typedef {Object} ImageSize
* @property {number} w - image width.
* @property {number} h - image height.
*/
/**
* @typedef {Object} ResizeImageWidthArgs
* @property {ImageData} img - image data we want to resize.
* @property {number} toWidth - final image width we want the image to shrink to.
*/
/**
* @typedef {Object} ResizeImageWidthResult
* @property {ImageData} img - resized image data.
* @property {ImageSize} size - resized image size.
*/
/**
* Helper function that creates a matrix (2D array) of specific
* size (w x h) and fills it with specified value.
* @param {number} w
* @param {number} h
* @param {?(number | SeamPixelMeta)} filler
* @returns {?(number | SeamPixelMeta)[][]}
*/
const matrix = (w, h, filler) => {
return new Array(h)
.fill(null)
.map(() => {
return new Array(w).fill(filler);
});
};
/**
* Calculates the energy of a pixel.
* @param {?PixelColor} left
* @param {PixelColor} middle
* @param {?PixelColor} right
* @returns {number}
*/
const getPixelEnergy = (left, middle, right) => {
// Middle pixel is the pixel we're calculating the energy for.
const [mR, mG, mB] = middle;
// Energy from the left pixel (if it exists).
let lEnergy = 0;
if (left) {
const [lR, lG, lB] = left;
lEnergy = (lR - mR) ** 2 + (lG - mG) ** 2 + (lB - mB) ** 2;
}
// Energy from the right pixel (if it exists).
let rEnergy = 0;
if (right) {
const [rR, rG, rB] = right;
rEnergy = (rR - mR) ** 2 + (rG - mG) ** 2 + (rB - mB) ** 2;
}
// Resulting pixel energy.
return Math.sqrt(lEnergy + rEnergy);
};
/**
* Calculates the energy of each pixel of the image.
* @param {ImageData} img
* @param {ImageSize} size
* @returns {EnergyMap}
*/
const calculateEnergyMap = (img, { w, h }) => {
// Create an empty energy map where each pixel has infinitely high energy.
// We will update the energy of each pixel.
const energyMap = matrix(w, h, Infinity);
for (let y = 0; y < h; y += 1) {
for (let x = 0; x < w; x += 1) {
// Left pixel might not exist if we're on the very left edge of the image.
const left = (x - 1) >= 0 ? getPixel(img, { x: x - 1, y }) : null;
// The color of the middle pixel that we're calculating the energy for.
const middle = getPixel(img, { x, y });
// Right pixel might not exist if we're on the very right edge of the image.
const right = (x + 1) < w ? getPixel(img, { x: x + 1, y }) : null;
energyMap[y][x] = getPixelEnergy(left, middle, right);
}
}
return energyMap;
};
/**
* Finds the seam (the sequence of pixels from top to bottom) that has the
* lowest resulting energy using the Dynamic Programming approach.
* @param {EnergyMap} energyMap
* @param {ImageSize} size
* @returns {Seam}
*/
const findLowEnergySeam = (energyMap, { w, h }) => {
// The 2D array of the size of w and h, where each pixel contains the
// seam metadata (pixel energy, pixel coordinate and previous pixel from
// the lowest energy seam at this point).
const seamPixelsMap = matrix(w, h, null);
// Populate the first row of the map by just copying the energies
// from the energy map.
for (let x = 0; x < w; x += 1) {
const y = 0;
seamPixelsMap[y][x] = {
energy: energyMap[y][x],
coordinate: { x, y },
previous: null,
};
}
// Populate the rest of the rows.
for (let y = 1; y < h; y += 1) {
for (let x = 0; x < w; x += 1) {
// Find the top adjacent cell with minimum energy.
// This cell would be the tail of a seam with lowest energy at this point.
// It doesn't mean that this seam (path) has lowest energy globally.
// Instead, it means that we found a path with the lowest energy that may lead
// us to the current pixel with the coordinates x and y.
let minPrevEnergy = Infinity;
let minPrevX = x;
for (let i = (x - 1); i <= (x + 1); i += 1) {
if (i >= 0 && i < w && seamPixelsMap[y - 1][i].energy < minPrevEnergy) {
minPrevEnergy = seamPixelsMap[y - 1][i].energy;
minPrevX = i;
}
}
// Update the current cell.
seamPixelsMap[y][x] = {
energy: minPrevEnergy + energyMap[y][x],
coordinate: { x, y },
previous: { x: minPrevX, y: y - 1 },
};
}
}
// Find where the minimum energy seam ends.
// We need to find the tail of the lowest energy seam to start
// traversing it from its tail to its head (from the bottom to the top).
let lastMinCoordinate = null;
let minSeamEnergy = Infinity;
for (let x = 0; x < w; x += 1) {
const y = h - 1;
if (seamPixelsMap[y][x].energy < minSeamEnergy) {
minSeamEnergy = seamPixelsMap[y][x].energy;
lastMinCoordinate = { x, y };
}
}
// Find the lowest energy energy seam.
// Once we know where the tail is we may traverse and assemble the lowest
// energy seam based on the "previous" value of the seam pixel metadata.
const seam = [];
const { x: lastMinX, y: lastMinY } = lastMinCoordinate;
// Adding new pixel to the seam path one by one until we reach the top.
let currentSeam = seamPixelsMap[lastMinY][lastMinX];
while (currentSeam) {
seam.push(currentSeam.coordinate);
const prevMinCoordinates = currentSeam.previous;
if (!prevMinCoordinates) {
currentSeam = null;
} else {
const { x: prevMinX, y: prevMinY } = prevMinCoordinates;
currentSeam = seamPixelsMap[prevMinY][prevMinX];
}
}
return seam;
};
/**
* Deletes the seam from the image data.
* We delete the pixel in each row and then shift the rest of the row pixels to the left.
* @param {ImageData} img
* @param {Seam} seam
* @param {ImageSize} size
*/
const deleteSeam = (img, seam, { w }) => {
seam.forEach(({ x: seamX, y: seamY }) => {
for (let x = seamX; x < (w - 1); x += 1) {
const nextPixel = getPixel(img, { x: x + 1, y: seamY });
setPixel(img, { x, y: seamY }, nextPixel);
}
});
};
/**
* Performs the content-aware image width resizing using the seam carving method.
* @param {ResizeImageWidthArgs} args
* @returns {ResizeImageWidthResult}
*/
const resizeImageWidth = ({ img, toWidth }) => {
/**
* For performance reasons we want to avoid changing the img data array size.
* Instead we'll just keep the record of the resized image width and height separately.
* @type {ImageSize}
*/
const size = { w: img.width, h: img.height };
// Calculating the number of pixels to remove.
const pxToRemove = img.width - toWidth;
let energyMap = null;
let seam = null;
// Removing the lowest energy seams one by one.
for (let i = 0; i < pxToRemove; i += 1) {
// 1. Calculate the energy map for the current version of the image.
energyMap = calculateEnergyMap(img, size);
// 2. Find the seam with the lowest energy based on the energy map.
seam = findLowEnergySeam(energyMap, size);
// 3. Delete the seam with the lowest energy seam from the image.
deleteSeam(img, seam, size);
// Reduce the image width, and continue iterations.
size.w -= 1;
}
// Returning the resized image and its final size.
// The img is actually a reference to the ImageData, so technically
// the caller of the function already has this pointer. But let's
// still return it for better code readability.
return { img, size };
};
export default resizeImageWidth;