@dxzmpk/js-algorithms-data-structures
Version:
Algorithms and data-structures implemented on JavaScript
118 lines (105 loc) • 3.86 kB
JavaScript
import GraphVertex from '../../../../data-structures/graph/GraphVertex';
import GraphEdge from '../../../../data-structures/graph/GraphEdge';
import Graph from '../../../../data-structures/graph/Graph';
import dijkstra from '../dijkstra';
describe('dijkstra', () => {
it('should find minimum paths to all vertices for undirected graph', () => {
const vertexA = new GraphVertex('A');
const vertexB = new GraphVertex('B');
const vertexC = new GraphVertex('C');
const vertexD = new GraphVertex('D');
const vertexE = new GraphVertex('E');
const vertexF = new GraphVertex('F');
const vertexG = new GraphVertex('G');
const vertexH = new GraphVertex('H');
const edgeAB = new GraphEdge(vertexA, vertexB, 4);
const edgeAE = new GraphEdge(vertexA, vertexE, 7);
const edgeAC = new GraphEdge(vertexA, vertexC, 3);
const edgeBC = new GraphEdge(vertexB, vertexC, 6);
const edgeBD = new GraphEdge(vertexB, vertexD, 5);
const edgeEC = new GraphEdge(vertexE, vertexC, 8);
const edgeED = new GraphEdge(vertexE, vertexD, 2);
const edgeDC = new GraphEdge(vertexD, vertexC, 11);
const edgeDG = new GraphEdge(vertexD, vertexG, 10);
const edgeDF = new GraphEdge(vertexD, vertexF, 2);
const edgeFG = new GraphEdge(vertexF, vertexG, 3);
const edgeEG = new GraphEdge(vertexE, vertexG, 5);
const graph = new Graph();
graph
.addVertex(vertexH)
.addEdge(edgeAB)
.addEdge(edgeAE)
.addEdge(edgeAC)
.addEdge(edgeBC)
.addEdge(edgeBD)
.addEdge(edgeEC)
.addEdge(edgeED)
.addEdge(edgeDC)
.addEdge(edgeDG)
.addEdge(edgeDF)
.addEdge(edgeFG)
.addEdge(edgeEG);
const { distances, previousVertices } = dijkstra(graph, vertexA);
expect(distances).toEqual({
H: Infinity,
A: 0,
B: 4,
E: 7,
C: 3,
D: 9,
G: 12,
F: 11,
});
expect(previousVertices.F.getKey()).toBe('D');
expect(previousVertices.D.getKey()).toBe('B');
expect(previousVertices.B.getKey()).toBe('A');
expect(previousVertices.G.getKey()).toBe('E');
expect(previousVertices.C.getKey()).toBe('A');
expect(previousVertices.A).toBeNull();
expect(previousVertices.H).toBeNull();
});
it('should find minimum paths to all vertices for directed graph with negative edge weights', () => {
const vertexS = new GraphVertex('S');
const vertexE = new GraphVertex('E');
const vertexA = new GraphVertex('A');
const vertexD = new GraphVertex('D');
const vertexB = new GraphVertex('B');
const vertexC = new GraphVertex('C');
const vertexH = new GraphVertex('H');
const edgeSE = new GraphEdge(vertexS, vertexE, 8);
const edgeSA = new GraphEdge(vertexS, vertexA, 10);
const edgeED = new GraphEdge(vertexE, vertexD, 1);
const edgeDA = new GraphEdge(vertexD, vertexA, -4);
const edgeDC = new GraphEdge(vertexD, vertexC, -1);
const edgeAC = new GraphEdge(vertexA, vertexC, 2);
const edgeCB = new GraphEdge(vertexC, vertexB, -2);
const edgeBA = new GraphEdge(vertexB, vertexA, 1);
const graph = new Graph(true);
graph
.addVertex(vertexH)
.addEdge(edgeSE)
.addEdge(edgeSA)
.addEdge(edgeED)
.addEdge(edgeDA)
.addEdge(edgeDC)
.addEdge(edgeAC)
.addEdge(edgeCB)
.addEdge(edgeBA);
const { distances, previousVertices } = dijkstra(graph, vertexS);
expect(distances).toEqual({
H: Infinity,
S: 0,
A: 5,
B: 5,
C: 7,
D: 9,
E: 8,
});
expect(previousVertices.H).toBeNull();
expect(previousVertices.S).toBeNull();
expect(previousVertices.B.getKey()).toBe('C');
expect(previousVertices.C.getKey()).toBe('A');
expect(previousVertices.A.getKey()).toBe('D');
expect(previousVertices.D.getKey()).toBe('E');
});
});