UNPKG

@duetds/date-picker

Version:

Duet Date Picker is an open source version of Duet Design System’s accessible date picker.

273 lines (257 loc) 8.77 kB
import { multiply2d } from '../math' import { ones } from './ones' import { sub } from './sub' import { zeros } from './zeros' import { Matrix, Shape } from '../types' /** * `C = conv2(a,b)` computes the two-dimensional convolution of matrices `a` and `b`. If one of * these matrices describes a two-dimensional finite impulse response (FIR) filter, the other matrix * is filtered in two dimensions. The size of `c` is determined as follows: * * ``` * if [ma,na] = size(a), [mb,nb] = size(b), and [mc,nc] = size(c), then * mc = max([ma+mb-1,ma,mb]) and nc = max([na+nb-1,na,nb]). * ``` * * `shape` returns a subsection of the two-dimensional convolution, based on one of these values for * the parameter: * * - **full**: Returns the full two-dimensional convolution (default). * - **same**: Returns the central part of the convolution of the same size as `a`. * - **valid**: Returns only those parts of the convolution that are computed without the * zero-padded edges. Using this option, `size(c) === max([ma-max(0,mb-1),na-max(0,nb-1)],0)` * * @method mxConv2 * @param {Matrix} a - The first matrix * @param {Matrix} b - The second matrix * @param {String} [shape='full'] - One of 'full' / 'same' / 'valid' * @returns {Matrix} c - Returns the convolution filtered by `shape` * @private * @memberOf matlab */ function mxConv2( { data: ref, width: refWidth, height: refHeight }: Matrix, b: Matrix, shape: Shape = 'full' ): Matrix { const cWidth = refWidth + b.width - 1 const cHeight = refHeight + b.height - 1 const { data } = zeros(cHeight, cWidth) /** * Computing the convolution is the most computentionally intensive task for SSIM and we do it * several times. * * This section has been optimized for performance and readability suffers. */ for (let r1 = 0; r1 < b.height; r1++) { for (let c1 = 0; c1 < b.width; c1++) { const br1c1 = b.data[r1 * b.width + c1] if (br1c1) { for (let i = 0; i < refHeight; i++) { for (let j = 0; j < refWidth; j++) { data[(i + r1) * cWidth + j + c1] += ref[i * refWidth + j] * br1c1 } } } } } const c = { data, width: cWidth, height: cHeight, } return reshape(c, shape, refHeight, b.height, refWidth, b.width) } /** * `C = boxConv(a,b)` computes the two-dimensional convolution of a matrix `a` and box kernel `b`. * * The `shape` parameter returns a subsection of the two-dimensional convolution as defined by * mxConv2. * * @method boxConv * @param {Matrix} a - The first matrix * @param {Matrix} b - The box kernel * @param {String} [shape='full'] - One of 'full' / 'same' / 'valid' * @returns {Matrix} c - Returns the convolution filtered by `shape` * @private * @memberOf matlab */ function boxConv( a: Matrix, { data, width, height }: Matrix, shape: Shape = 'full' ): Matrix { const b1 = ones(height, 1) const b2 = ones(1, width) const out = convn(a, b1, b2, shape) return multiply2d(out, data[0]) } /** * Determines whether all values in an array are the same so that the kernel can be treated as a box * kernel * * @method isBoxKernel * @param {Matrix} a - The input matrix * @returns {Boolean} boxKernel - Returns true if all values in the matrix are the same, false * otherwise * @private * @memberOf matlab */ function isBoxKernel({ data }: Matrix): boolean { const expected = data[0] for (let i = 1; i < data.length; i++) { if (data[i] !== expected) { return false } } return true } /** * `C = convn(a,b1, b2)` computes the two-dimensional convolution of matrices `a.*b1.*b2`. * * The size of `c` is determined as follows: * * ``` * if [ma,na] = size(a), [mb] = size(b1), [nb] = size(b2) and [mc,nc] = size(c), then * mc = max([ma+mb-1,ma,mb]) and nc = max([na+nb-1,na,nb]). * ``` * * `shape` returns a section of the two-dimensional convolution, based on one of these values for * the parameter: * * - **full**: Returns the full two-dimensional convolution (default). * - **same**: Returns the central part of the convolution of the same size as `a`. * - **valid**: Returns only those parts of the convolution that are computed without the * zero-padded edges. Using this option, `size(c) === max([ma-max(0,mb-1),na-max(0,nb-1)],0)` * * This method mimics Matlab's `convn` method but limited to 2 1 dimensional kernels. * * @method convn * @param {Matrix} a - The first matrix * @param {Matrix} b1 - The first 1-D kernel * @param {Matrix} b2 - The second 1-D kernel * @param {String} [shape='full'] - One of 'full' / 'same' / 'valid' * @returns {Matrix} c - Returns the convolution filtered by `shape` * @private * @memberOf matlab */ function convn( a: Matrix, b1: Matrix, b2: Matrix, shape: Shape = 'full' ): Matrix { const mb = Math.max(b1.height, b1.width) const nb = Math.max(b2.height, b2.width) const temp = mxConv2(a, b1, 'full') const c = mxConv2(temp, b2, 'full') return reshape(c, shape, a.height, mb, a.width, nb) } /** * `reshape` crops the resulting convolution matrix to match the values specified in `shape`. * * - **full**: Returns the input * - **same**: Returns the central part of the convolution of the same size as `a`. * - **valid**: Returns only those parts of the convolution that are computed without the * zero-padded edges * * @method reshape * @param {Matrix} c - The output matrix * @param {String} shape - One of 'full' / 'same' / 'valid' * @param {Number} ma - The number of rows of the input matrix * @param {Number} mb - The number of rows of the input filter * @param {Number} na - The number of columns of the input matrix * @param {Number} nb - The number of columns of the input filter * @returns {Matrix} c - Returns the input convolution filtered by `shape` * @private * @memberOf matlab */ function reshape( c: Matrix, shape: Shape, ma: number, mb: number, na: number, nb: number ): Matrix { if (shape === 'full') { return c } else if (shape === 'same') { const rowStart = Math.ceil((c.height - ma) / 2) const colStart = Math.ceil((c.width - na) / 2) return sub(c, rowStart, ma, colStart, na) } return sub(c, mb - 1, ma - mb + 1, nb - 1, na - nb + 1) } /** * `C = conv2(a,b)` computes the two-dimensional convolution of matrices `a` and `b`. If one of * these matrices describes a two-dimensional finite impulse response (FIR) filter, the other matrix * is filtered in two dimensions. * * The size of `c` is determined as follows: * * ``` * if [ma,na] = size(a), [mb,nb] = size(b), and [mc,nc] = size(c), then * mc = max([ma+mb-1,ma,mb]) and nc = max([na+nb-1,na,nb]). * ``` * * `shape` returns a subsection of the two-dimensional convolution, based on one of these values for * the parameter: * * - **full**: Returns the full two-dimensional convolution (default). * - **same**: Returns the central part of the convolution of the same size as `a`. * - **valid**: Returns only those parts of the convolution that are computed without the * zero-padded edges. Using this option, `size(c) === max([ma-max(0,mb-1),na-max(0,nb-1)],0)` * * Alternatively, 2 1-D filters may be provided as parameters, following the format: * `conv2(a, b1, b2, shape)`. This is similar to Matlab's implementation allowing any number of 1-D * filters to be applied but limited to 2 * * This method mimics Matlab's `conv2` method. * * Given: * const A = rand(3); * const B = rand(4); * * @example conv2(A,B); // output is 6-by-6 * { * data: [ * 0.1838, 0.2374, 0.9727, 1.2644, 0.7890, 0.3750, * 0.6929, 1.2019, 1.5499, 2.1733, 1.3325, 0.3096, * 0.5627, 1.5150, 2.3576, 3.1553, 2.5373, 1.0602, * 0.9986, 2.3811, 3.4302, 3.5128, 2.4489, 0.8462, * 0.3089, 1.1419, 1.8229, 2.1561, 1.6364, 0.6841, * 0.3287, 0.9347, 1.6464, 1.7928, 1.2422, 0.5423 * ], * width: 6, * height: 6 * } * * @example conv2(A,B,'same') => // output is the same size as A: 3-by-3 * { * data: [ * 2.3576, 3.1553, 2.5373, * 3.4302, 3.5128, 2.4489, * 1.8229, 2.1561, 1.6364 * ], * width: 3, * height: 3 * } * * @method conv2 * @param {Array} args - The list of arguments, see `mxConv2` and `convn` for the exact parameters * @returns {Matrix} c - Returns the convolution filtered by `shape` * @public * @memberOf matlab * @since 0.0.2 */ export function conv2( ...args: Parameters<typeof boxConv | typeof convn | typeof mxConv2> ) { if (args[2] && (args[2] as Matrix).data) { return convn(...(args as Parameters<typeof convn>)) } else if (isBoxKernel(args[1])) { return boxConv(...(args as Parameters<typeof boxConv>)) } return mxConv2(...(args as Parameters<typeof mxConv2>)) }