@dooor-ai/toolkit
Version:
Guards, Evals & Observability for AI applications - works seamlessly with LangChain/LangGraph
173 lines (149 loc) • 5.05 kB
text/typescript
import { Eval } from "./base";
import { EvalResult, EvalConfig } from "../core/types";
import { getCortexDBClient, getGlobalProviderName } from "../observability/cortexdb-client";
export interface KnowledgeRetentionConfig extends EvalConfig {
/** Conversation history (previous messages) */
conversationHistory?: Array<{ role: string; content: string }>;
}
/**
* KnowledgeRetentionEval - Measures if LLM remembers previous conversation context
*
* Evaluates whether the response demonstrates awareness of earlier messages,
* important for multi-turn conversations and chatbots.
*
* Example:
* ```typescript
* const eval = new KnowledgeRetentionEval({
* threshold: 0.8,
* conversationHistory: [
* { role: "user", content: "My name is Alice." },
* { role: "assistant", content: "Nice to meet you, Alice!" }
* ]
* });
* const result = await eval.evaluate(
* "What's my name?",
* "Your name is Alice."
* );
* // result.score = 1.0, result.passed = true
* ```
*/
export class KnowledgeRetentionEval extends Eval {
private conversationHistory?: Array<{ role: string; content: string }>;
constructor(config: KnowledgeRetentionConfig = {}) {
super(config);
this.conversationHistory = config.conversationHistory;
}
get name(): string {
return "KnowledgeRetentionEval";
}
/**
* Set conversation history dynamically
*/
setConversationHistory(history: Array<{ role: string; content: string }>): void {
this.conversationHistory = history;
}
async evaluate(
input: string,
output: string,
metadata?: Record<string, any>
): Promise<EvalResult> {
const startTime = Date.now();
const history = this.conversationHistory || metadata?.conversationHistory || metadata?.history;
if (!history || history.length === 0) {
return {
name: this.name,
score: 0.5,
passed: false,
details: "No conversation history provided. Pass 'conversationHistory' via config or metadata.",
metadata: {
latency: Date.now() - startTime,
},
timestamp: new Date(),
};
}
try {
const cortexClient = getCortexDBClient();
const providerName = getGlobalProviderName();
const prompt = this.buildPrompt(history, input, output);
const response = await cortexClient.invokeAI({
prompt,
usage: "evaluation",
providerName: providerName || undefined,
temperature: 0.0,
maxTokens: 300,
});
const score = this.parseScore(response.text);
const passed = score >= this.getThreshold();
return {
name: this.name,
score,
passed,
details: `Knowledge retention score: ${score.toFixed(2)}. ${passed ? "PASSED" : "FAILED"} (threshold: ${this.getThreshold()})`,
metadata: {
latency: Date.now() - startTime,
judgeResponse: response.text,
historyLength: history.length,
},
timestamp: new Date(),
};
} catch (error) {
console.error("KnowledgeRetentionEval failed:", error);
return {
name: this.name,
score: 0.5,
passed: false,
details: `Eval failed: ${error instanceof Error ? error.message : "Unknown error"}`,
metadata: {
error: String(error),
latency: Date.now() - startTime,
},
timestamp: new Date(),
};
}
}
private buildPrompt(
history: Array<{ role: string; content: string }>,
currentInput: string,
currentOutput: string
): string {
const historyText = history
.map((msg) => `${msg.role.toUpperCase()}: ${msg.content}`)
.join("\n");
return `You are an expert evaluator. Your task is to assess if the response demonstrates KNOWLEDGE RETENTION from previous conversation.
Conversation History:
${historyText}
Current Turn:
USER: ${currentInput}
ASSISTANT: ${currentOutput}
Evaluate knowledge retention:
- 1.0 = Perfect retention, references earlier context appropriately
- 0.7-0.9 = Good retention, mostly aware of history
- 0.4-0.6 = Partial retention, misses some important context
- 0.0-0.3 = Poor retention, ignores or contradicts earlier information
Output ONLY a JSON object in this exact format:
{
"score": 0.9,
"reasoning": "Assessment of how well the response uses conversation history"
}`;
}
private parseScore(response: string): number {
try {
const jsonMatch = response.match(/\{[\s\S]*\}/);
if (jsonMatch) {
const parsed = JSON.parse(jsonMatch[0]);
if (typeof parsed.score === "number") {
return Math.max(0, Math.min(1, parsed.score));
}
}
const numberMatch = response.match(/\b0?\.\d+\b|\b1\.0\b|\b[01]\b/);
if (numberMatch) {
return Math.max(0, Math.min(1, parseFloat(numberMatch[0])));
}
console.warn("Could not parse score from response:", response);
return 0.5;
} catch (error) {
console.error("Error parsing score:", error);
return 0.5;
}
}
}