UNPKG

@dooor-ai/toolkit

Version:

Guards, Evals & Observability for AI applications - works seamlessly with LangChain/LangGraph

48 lines 1.48 kB
/** * RAG helper functions for DOOOR AI Toolkit */ import { RAGContext } from "./context"; import { RAGMetadata, RAGResult } from "./types"; export interface RAGRetrievalResult { context: string; results: RAGResult[]; metadata: RAGMetadata; } /** * Retrieve relevant context using RAG * * @param query - The user query * @param ragContext - RAG configuration (files, documents, embeddings, strategy) * @returns Retrieved context and metadata * * @example * ```typescript * const ragContext = new RAGContext({ * files: [pdfFile], * embeddingProvider: "prod-gemini", * strategy: RAGStrategy.HYDE, * }); * * const { context, metadata } = await retrieveContext("How to authenticate?", ragContext); * * const result = await llm.invoke([ * { role: "user", content: `Context:\n${context}\n\nQuestion: How to authenticate?` } * ]); * ``` */ export declare function retrieveContext(query: string, ragContext: RAGContext): Promise<RAGRetrievalResult>; /** * Build a prompt with RAG context injected * * @param query - The user query * @param ragContext - RAG configuration * @returns Prompt with context injected * * @example * ```typescript * const prompt = await buildRAGPrompt("How to authenticate?", ragContext); * const result = await llm.invoke([{ role: "user", content: prompt }]); * ``` */ export declare function buildRAGPrompt(query: string, ragContext: RAGContext): Promise<string>; //# sourceMappingURL=helpers.d.ts.map