@dooor-ai/toolkit
Version:
Guards, Evals & Observability for AI applications - works seamlessly with LangChain/LangGraph
48 lines • 1.48 kB
TypeScript
/**
* RAG helper functions for DOOOR AI Toolkit
*/
import { RAGContext } from "./context";
import { RAGMetadata, RAGResult } from "./types";
export interface RAGRetrievalResult {
context: string;
results: RAGResult[];
metadata: RAGMetadata;
}
/**
* Retrieve relevant context using RAG
*
* @param query - The user query
* @param ragContext - RAG configuration (files, documents, embeddings, strategy)
* @returns Retrieved context and metadata
*
* @example
* ```typescript
* const ragContext = new RAGContext({
* files: [pdfFile],
* embeddingProvider: "prod-gemini",
* strategy: RAGStrategy.HYDE,
* });
*
* const { context, metadata } = await retrieveContext("How to authenticate?", ragContext);
*
* const result = await llm.invoke([
* { role: "user", content: `Context:\n${context}\n\nQuestion: How to authenticate?` }
* ]);
* ```
*/
export declare function retrieveContext(query: string, ragContext: RAGContext): Promise<RAGRetrievalResult>;
/**
* Build a prompt with RAG context injected
*
* @param query - The user query
* @param ragContext - RAG configuration
* @returns Prompt with context injected
*
* @example
* ```typescript
* const prompt = await buildRAGPrompt("How to authenticate?", ragContext);
* const result = await llm.invoke([{ role: "user", content: prompt }]);
* ```
*/
export declare function buildRAGPrompt(query: string, ragContext: RAGContext): Promise<string>;
//# sourceMappingURL=helpers.d.ts.map