UNPKG

@dooor-ai/toolkit

Version:

Guards, Evals & Observability for AI applications - works seamlessly with LangChain/LangGraph

139 lines (134 loc) 4.85 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.ContextualPrecisionEval = void 0; const base_1 = require("./base"); const cortexdb_client_1 = require("../observability/cortexdb-client"); /** * ContextualPrecisionEval - Measures if the retrieved context is relevant (no noise) * * Evaluates whether the retrieved documents are actually useful for answering * the question. High precision means low noise, no irrelevant docs. * * Example: * ```typescript * const eval = new ContextualPrecisionEval({ * threshold: 0.8, * context: "Paris is the capital of France. The weather is sunny today." * }); * const result = await eval.evaluate( * "What is the capital of France?", * "Paris" * ); * // result.score = 0.75 (50% relevant, 50% noise), result.passed = false * ``` */ class ContextualPrecisionEval extends base_1.Eval { constructor(config = {}) { super(config); this.context = config.context; } get name() { return "ContextualPrecisionEval"; } /** * Set context dynamically */ setContext(context) { this.context = context; } async evaluate(input, output, metadata) { const startTime = Date.now(); const context = this.context || metadata?.context || metadata?.retrievedDocs; if (!context) { return { name: this.name, score: 0.5, passed: false, details: "No context provided for precision evaluation. Pass 'context' via config or metadata.", metadata: { latency: Date.now() - startTime, }, timestamp: new Date(), }; } try { const cortexClient = (0, cortexdb_client_1.getCortexDBClient)(); const providerName = (0, cortexdb_client_1.getGlobalProviderName)(); const prompt = this.buildPrompt(input, context); const response = await cortexClient.invokeAI({ prompt, usage: "evaluation", providerName: providerName || undefined, temperature: 0.0, maxTokens: 300, }); const score = this.parseScore(response.text); const passed = score >= this.getThreshold(); return { name: this.name, score, passed, details: `Contextual precision score: ${score.toFixed(2)}. ${passed ? "PASSED" : "FAILED"} (threshold: ${this.getThreshold()})`, metadata: { latency: Date.now() - startTime, judgeResponse: response.text, contextLength: context.length, }, timestamp: new Date(), }; } catch (error) { console.error("ContextualPrecisionEval failed:", error); return { name: this.name, score: 0.5, passed: false, details: `Eval failed: ${error instanceof Error ? error.message : "Unknown error"}`, metadata: { error: String(error), latency: Date.now() - startTime, }, timestamp: new Date(), }; } } buildPrompt(question, context) { return `You are an expert evaluator. Your task is to measure PRECISION: how much of the retrieved context is actually relevant to the question? Question: "${question}" Retrieved Context: """ ${context} """ Evaluate precision (relevance ratio): - 1.0 = 100% of context is relevant, zero noise - 0.7-0.9 = Most context is relevant, minor irrelevant parts - 0.4-0.6 = Mixed, significant irrelevant content - 0.0-0.3 = Mostly irrelevant, high noise Output ONLY a JSON object in this exact format: { "score": 0.85, "reasoning": "What percentage is relevant vs irrelevant" }`; } parseScore(response) { try { const jsonMatch = response.match(/\{[\s\S]*\}/); if (jsonMatch) { const parsed = JSON.parse(jsonMatch[0]); if (typeof parsed.score === "number") { return Math.max(0, Math.min(1, parsed.score)); } } const numberMatch = response.match(/\b0?\.\d+\b|\b1\.0\b|\b[01]\b/); if (numberMatch) { return Math.max(0, Math.min(1, parseFloat(numberMatch[0]))); } console.warn("Could not parse score from response:", response); return 0.5; } catch (error) { console.error("Error parsing score:", error); return 0.5; } } } exports.ContextualPrecisionEval = ContextualPrecisionEval;