UNPKG

@dioxide-js/silas

Version:

RPC utility for Silas

1 lines 171 kB
{"version":3,"file":"bignumber2.mjs","sources":["../../../../node_modules/bignumber.js/bignumber.js"],"sourcesContent":[";(function (globalObject) {\r\n 'use strict';\r\n\r\n/*\r\n * bignumber.js v9.1.2\r\n * A JavaScript library for arbitrary-precision arithmetic.\r\n * https://github.com/MikeMcl/bignumber.js\r\n * Copyright (c) 2022 Michael Mclaughlin <M8ch88l@gmail.com>\r\n * MIT Licensed.\r\n *\r\n * BigNumber.prototype methods | BigNumber methods\r\n * |\r\n * absoluteValue abs | clone\r\n * comparedTo | config set\r\n * decimalPlaces dp | DECIMAL_PLACES\r\n * dividedBy div | ROUNDING_MODE\r\n * dividedToIntegerBy idiv | EXPONENTIAL_AT\r\n * exponentiatedBy pow | RANGE\r\n * integerValue | CRYPTO\r\n * isEqualTo eq | MODULO_MODE\r\n * isFinite | POW_PRECISION\r\n * isGreaterThan gt | FORMAT\r\n * isGreaterThanOrEqualTo gte | ALPHABET\r\n * isInteger | isBigNumber\r\n * isLessThan lt | maximum max\r\n * isLessThanOrEqualTo lte | minimum min\r\n * isNaN | random\r\n * isNegative | sum\r\n * isPositive |\r\n * isZero |\r\n * minus |\r\n * modulo mod |\r\n * multipliedBy times |\r\n * negated |\r\n * plus |\r\n * precision sd |\r\n * shiftedBy |\r\n * squareRoot sqrt |\r\n * toExponential |\r\n * toFixed |\r\n * toFormat |\r\n * toFraction |\r\n * toJSON |\r\n * toNumber |\r\n * toPrecision |\r\n * toString |\r\n * valueOf |\r\n *\r\n */\r\n\r\n\r\n var BigNumber,\r\n isNumeric = /^-?(?:\\d+(?:\\.\\d*)?|\\.\\d+)(?:e[+-]?\\d+)?$/i,\r\n mathceil = Math.ceil,\r\n mathfloor = Math.floor,\r\n\r\n bignumberError = '[BigNumber Error] ',\r\n tooManyDigits = bignumberError + 'Number primitive has more than 15 significant digits: ',\r\n\r\n BASE = 1e14,\r\n LOG_BASE = 14,\r\n MAX_SAFE_INTEGER = 0x1fffffffffffff, // 2^53 - 1\r\n // MAX_INT32 = 0x7fffffff, // 2^31 - 1\r\n POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13],\r\n SQRT_BASE = 1e7,\r\n\r\n // EDITABLE\r\n // The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and\r\n // the arguments to toExponential, toFixed, toFormat, and toPrecision.\r\n MAX = 1E9; // 0 to MAX_INT32\r\n\r\n\r\n /*\r\n * Create and return a BigNumber constructor.\r\n */\r\n function clone(configObject) {\r\n var div, convertBase, parseNumeric,\r\n P = BigNumber.prototype = { constructor: BigNumber, toString: null, valueOf: null },\r\n ONE = new BigNumber(1),\r\n\r\n\r\n //----------------------------- EDITABLE CONFIG DEFAULTS -------------------------------\r\n\r\n\r\n // The default values below must be integers within the inclusive ranges stated.\r\n // The values can also be changed at run-time using BigNumber.set.\r\n\r\n // The maximum number of decimal places for operations involving division.\r\n DECIMAL_PLACES = 20, // 0 to MAX\r\n\r\n // The rounding mode used when rounding to the above decimal places, and when using\r\n // toExponential, toFixed, toFormat and toPrecision, and round (default value).\r\n // UP 0 Away from zero.\r\n // DOWN 1 Towards zero.\r\n // CEIL 2 Towards +Infinity.\r\n // FLOOR 3 Towards -Infinity.\r\n // HALF_UP 4 Towards nearest neighbour. If equidistant, up.\r\n // HALF_DOWN 5 Towards nearest neighbour. If equidistant, down.\r\n // HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour.\r\n // HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity.\r\n // HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.\r\n ROUNDING_MODE = 4, // 0 to 8\r\n\r\n // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]\r\n\r\n // The exponent value at and beneath which toString returns exponential notation.\r\n // Number type: -7\r\n TO_EXP_NEG = -7, // 0 to -MAX\r\n\r\n // The exponent value at and above which toString returns exponential notation.\r\n // Number type: 21\r\n TO_EXP_POS = 21, // 0 to MAX\r\n\r\n // RANGE : [MIN_EXP, MAX_EXP]\r\n\r\n // The minimum exponent value, beneath which underflow to zero occurs.\r\n // Number type: -324 (5e-324)\r\n MIN_EXP = -1e7, // -1 to -MAX\r\n\r\n // The maximum exponent value, above which overflow to Infinity occurs.\r\n // Number type: 308 (1.7976931348623157e+308)\r\n // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.\r\n MAX_EXP = 1e7, // 1 to MAX\r\n\r\n // Whether to use cryptographically-secure random number generation, if available.\r\n CRYPTO = false, // true or false\r\n\r\n // The modulo mode used when calculating the modulus: a mod n.\r\n // The quotient (q = a / n) is calculated according to the corresponding rounding mode.\r\n // The remainder (r) is calculated as: r = a - n * q.\r\n //\r\n // UP 0 The remainder is positive if the dividend is negative, else is negative.\r\n // DOWN 1 The remainder has the same sign as the dividend.\r\n // This modulo mode is commonly known as 'truncated division' and is\r\n // equivalent to (a % n) in JavaScript.\r\n // FLOOR 3 The remainder has the same sign as the divisor (Python %).\r\n // HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.\r\n // EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)).\r\n // The remainder is always positive.\r\n //\r\n // The truncated division, floored division, Euclidian division and IEEE 754 remainder\r\n // modes are commonly used for the modulus operation.\r\n // Although the other rounding modes can also be used, they may not give useful results.\r\n MODULO_MODE = 1, // 0 to 9\r\n\r\n // The maximum number of significant digits of the result of the exponentiatedBy operation.\r\n // If POW_PRECISION is 0, there will be unlimited significant digits.\r\n POW_PRECISION = 0, // 0 to MAX\r\n\r\n // The format specification used by the BigNumber.prototype.toFormat method.\r\n FORMAT = {\r\n prefix: '',\r\n groupSize: 3,\r\n secondaryGroupSize: 0,\r\n groupSeparator: ',',\r\n decimalSeparator: '.',\r\n fractionGroupSize: 0,\r\n fractionGroupSeparator: '\\xA0', // non-breaking space\r\n suffix: ''\r\n },\r\n\r\n // The alphabet used for base conversion. It must be at least 2 characters long, with no '+',\r\n // '-', '.', whitespace, or repeated character.\r\n // '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'\r\n ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz',\r\n alphabetHasNormalDecimalDigits = true;\r\n\r\n\r\n //------------------------------------------------------------------------------------------\r\n\r\n\r\n // CONSTRUCTOR\r\n\r\n\r\n /*\r\n * The BigNumber constructor and exported function.\r\n * Create and return a new instance of a BigNumber object.\r\n *\r\n * v {number|string|BigNumber} A numeric value.\r\n * [b] {number} The base of v. Integer, 2 to ALPHABET.length inclusive.\r\n */\r\n function BigNumber(v, b) {\r\n var alphabet, c, caseChanged, e, i, isNum, len, str,\r\n x = this;\r\n\r\n // Enable constructor call without `new`.\r\n if (!(x instanceof BigNumber)) return new BigNumber(v, b);\r\n\r\n if (b == null) {\r\n\r\n if (v && v._isBigNumber === true) {\r\n x.s = v.s;\r\n\r\n if (!v.c || v.e > MAX_EXP) {\r\n x.c = x.e = null;\r\n } else if (v.e < MIN_EXP) {\r\n x.c = [x.e = 0];\r\n } else {\r\n x.e = v.e;\r\n x.c = v.c.slice();\r\n }\r\n\r\n return;\r\n }\r\n\r\n if ((isNum = typeof v == 'number') && v * 0 == 0) {\r\n\r\n // Use `1 / n` to handle minus zero also.\r\n x.s = 1 / v < 0 ? (v = -v, -1) : 1;\r\n\r\n // Fast path for integers, where n < 2147483648 (2**31).\r\n if (v === ~~v) {\r\n for (e = 0, i = v; i >= 10; i /= 10, e++);\r\n\r\n if (e > MAX_EXP) {\r\n x.c = x.e = null;\r\n } else {\r\n x.e = e;\r\n x.c = [v];\r\n }\r\n\r\n return;\r\n }\r\n\r\n str = String(v);\r\n } else {\r\n\r\n if (!isNumeric.test(str = String(v))) return parseNumeric(x, str, isNum);\r\n\r\n x.s = str.charCodeAt(0) == 45 ? (str = str.slice(1), -1) : 1;\r\n }\r\n\r\n // Decimal point?\r\n if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');\r\n\r\n // Exponential form?\r\n if ((i = str.search(/e/i)) > 0) {\r\n\r\n // Determine exponent.\r\n if (e < 0) e = i;\r\n e += +str.slice(i + 1);\r\n str = str.substring(0, i);\r\n } else if (e < 0) {\r\n\r\n // Integer.\r\n e = str.length;\r\n }\r\n\r\n } else {\r\n\r\n // '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'\r\n intCheck(b, 2, ALPHABET.length, 'Base');\r\n\r\n // Allow exponential notation to be used with base 10 argument, while\r\n // also rounding to DECIMAL_PLACES as with other bases.\r\n if (b == 10 && alphabetHasNormalDecimalDigits) {\r\n x = new BigNumber(v);\r\n return round(x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE);\r\n }\r\n\r\n str = String(v);\r\n\r\n if (isNum = typeof v == 'number') {\r\n\r\n // Avoid potential interpretation of Infinity and NaN as base 44+ values.\r\n if (v * 0 != 0) return parseNumeric(x, str, isNum, b);\r\n\r\n x.s = 1 / v < 0 ? (str = str.slice(1), -1) : 1;\r\n\r\n // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'\r\n if (BigNumber.DEBUG && str.replace(/^0\\.0*|\\./, '').length > 15) {\r\n throw Error\r\n (tooManyDigits + v);\r\n }\r\n } else {\r\n x.s = str.charCodeAt(0) === 45 ? (str = str.slice(1), -1) : 1;\r\n }\r\n\r\n alphabet = ALPHABET.slice(0, b);\r\n e = i = 0;\r\n\r\n // Check that str is a valid base b number.\r\n // Don't use RegExp, so alphabet can contain special characters.\r\n for (len = str.length; i < len; i++) {\r\n if (alphabet.indexOf(c = str.charAt(i)) < 0) {\r\n if (c == '.') {\r\n\r\n // If '.' is not the first character and it has not be found before.\r\n if (i > e) {\r\n e = len;\r\n continue;\r\n }\r\n } else if (!caseChanged) {\r\n\r\n // Allow e.g. hexadecimal 'FF' as well as 'ff'.\r\n if (str == str.toUpperCase() && (str = str.toLowerCase()) ||\r\n str == str.toLowerCase() && (str = str.toUpperCase())) {\r\n caseChanged = true;\r\n i = -1;\r\n e = 0;\r\n continue;\r\n }\r\n }\r\n\r\n return parseNumeric(x, String(v), isNum, b);\r\n }\r\n }\r\n\r\n // Prevent later check for length on converted number.\r\n isNum = false;\r\n str = convertBase(str, b, 10, x.s);\r\n\r\n // Decimal point?\r\n if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');\r\n else e = str.length;\r\n }\r\n\r\n // Determine leading zeros.\r\n for (i = 0; str.charCodeAt(i) === 48; i++);\r\n\r\n // Determine trailing zeros.\r\n for (len = str.length; str.charCodeAt(--len) === 48;);\r\n\r\n if (str = str.slice(i, ++len)) {\r\n len -= i;\r\n\r\n // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'\r\n if (isNum && BigNumber.DEBUG &&\r\n len > 15 && (v > MAX_SAFE_INTEGER || v !== mathfloor(v))) {\r\n throw Error\r\n (tooManyDigits + (x.s * v));\r\n }\r\n\r\n // Overflow?\r\n if ((e = e - i - 1) > MAX_EXP) {\r\n\r\n // Infinity.\r\n x.c = x.e = null;\r\n\r\n // Underflow?\r\n } else if (e < MIN_EXP) {\r\n\r\n // Zero.\r\n x.c = [x.e = 0];\r\n } else {\r\n x.e = e;\r\n x.c = [];\r\n\r\n // Transform base\r\n\r\n // e is the base 10 exponent.\r\n // i is where to slice str to get the first element of the coefficient array.\r\n i = (e + 1) % LOG_BASE;\r\n if (e < 0) i += LOG_BASE; // i < 1\r\n\r\n if (i < len) {\r\n if (i) x.c.push(+str.slice(0, i));\r\n\r\n for (len -= LOG_BASE; i < len;) {\r\n x.c.push(+str.slice(i, i += LOG_BASE));\r\n }\r\n\r\n i = LOG_BASE - (str = str.slice(i)).length;\r\n } else {\r\n i -= len;\r\n }\r\n\r\n for (; i--; str += '0');\r\n x.c.push(+str);\r\n }\r\n } else {\r\n\r\n // Zero.\r\n x.c = [x.e = 0];\r\n }\r\n }\r\n\r\n\r\n // CONSTRUCTOR PROPERTIES\r\n\r\n\r\n BigNumber.clone = clone;\r\n\r\n BigNumber.ROUND_UP = 0;\r\n BigNumber.ROUND_DOWN = 1;\r\n BigNumber.ROUND_CEIL = 2;\r\n BigNumber.ROUND_FLOOR = 3;\r\n BigNumber.ROUND_HALF_UP = 4;\r\n BigNumber.ROUND_HALF_DOWN = 5;\r\n BigNumber.ROUND_HALF_EVEN = 6;\r\n BigNumber.ROUND_HALF_CEIL = 7;\r\n BigNumber.ROUND_HALF_FLOOR = 8;\r\n BigNumber.EUCLID = 9;\r\n\r\n\r\n /*\r\n * Configure infrequently-changing library-wide settings.\r\n *\r\n * Accept an object with the following optional properties (if the value of a property is\r\n * a number, it must be an integer within the inclusive range stated):\r\n *\r\n * DECIMAL_PLACES {number} 0 to MAX\r\n * ROUNDING_MODE {number} 0 to 8\r\n * EXPONENTIAL_AT {number|number[]} -MAX to MAX or [-MAX to 0, 0 to MAX]\r\n * RANGE {number|number[]} -MAX to MAX (not zero) or [-MAX to -1, 1 to MAX]\r\n * CRYPTO {boolean} true or false\r\n * MODULO_MODE {number} 0 to 9\r\n * POW_PRECISION {number} 0 to MAX\r\n * ALPHABET {string} A string of two or more unique characters which does\r\n * not contain '.'.\r\n * FORMAT {object} An object with some of the following properties:\r\n * prefix {string}\r\n * groupSize {number}\r\n * secondaryGroupSize {number}\r\n * groupSeparator {string}\r\n * decimalSeparator {string}\r\n * fractionGroupSize {number}\r\n * fractionGroupSeparator {string}\r\n * suffix {string}\r\n *\r\n * (The values assigned to the above FORMAT object properties are not checked for validity.)\r\n *\r\n * E.g.\r\n * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 })\r\n *\r\n * Ignore properties/parameters set to null or undefined, except for ALPHABET.\r\n *\r\n * Return an object with the properties current values.\r\n */\r\n BigNumber.config = BigNumber.set = function (obj) {\r\n var p, v;\r\n\r\n if (obj != null) {\r\n\r\n if (typeof obj == 'object') {\r\n\r\n // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.\r\n // '[BigNumber Error] DECIMAL_PLACES {not a primitive number|not an integer|out of range}: {v}'\r\n if (obj.hasOwnProperty(p = 'DECIMAL_PLACES')) {\r\n v = obj[p];\r\n intCheck(v, 0, MAX, p);\r\n DECIMAL_PLACES = v;\r\n }\r\n\r\n // ROUNDING_MODE {number} Integer, 0 to 8 inclusive.\r\n // '[BigNumber Error] ROUNDING_MODE {not a primitive number|not an integer|out of range}: {v}'\r\n if (obj.hasOwnProperty(p = 'ROUNDING_MODE')) {\r\n v = obj[p];\r\n intCheck(v, 0, 8, p);\r\n ROUNDING_MODE = v;\r\n }\r\n\r\n // EXPONENTIAL_AT {number|number[]}\r\n // Integer, -MAX to MAX inclusive or\r\n // [integer -MAX to 0 inclusive, 0 to MAX inclusive].\r\n // '[BigNumber Error] EXPONENTIAL_AT {not a primitive number|not an integer|out of range}: {v}'\r\n if (obj.hasOwnProperty(p = 'EXPONENTIAL_AT')) {\r\n v = obj[p];\r\n if (v && v.pop) {\r\n intCheck(v[0], -MAX, 0, p);\r\n intCheck(v[1], 0, MAX, p);\r\n TO_EXP_NEG = v[0];\r\n TO_EXP_POS = v[1];\r\n } else {\r\n intCheck(v, -MAX, MAX, p);\r\n TO_EXP_NEG = -(TO_EXP_POS = v < 0 ? -v : v);\r\n }\r\n }\r\n\r\n // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or\r\n // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].\r\n // '[BigNumber Error] RANGE {not a primitive number|not an integer|out of range|cannot be zero}: {v}'\r\n if (obj.hasOwnProperty(p = 'RANGE')) {\r\n v = obj[p];\r\n if (v && v.pop) {\r\n intCheck(v[0], -MAX, -1, p);\r\n intCheck(v[1], 1, MAX, p);\r\n MIN_EXP = v[0];\r\n MAX_EXP = v[1];\r\n } else {\r\n intCheck(v, -MAX, MAX, p);\r\n if (v) {\r\n MIN_EXP = -(MAX_EXP = v < 0 ? -v : v);\r\n } else {\r\n throw Error\r\n (bignumberError + p + ' cannot be zero: ' + v);\r\n }\r\n }\r\n }\r\n\r\n // CRYPTO {boolean} true or false.\r\n // '[BigNumber Error] CRYPTO not true or false: {v}'\r\n // '[BigNumber Error] crypto unavailable'\r\n if (obj.hasOwnProperty(p = 'CRYPTO')) {\r\n v = obj[p];\r\n if (v === !!v) {\r\n if (v) {\r\n if (typeof crypto != 'undefined' && crypto &&\r\n (crypto.getRandomValues || crypto.randomBytes)) {\r\n CRYPTO = v;\r\n } else {\r\n CRYPTO = !v;\r\n throw Error\r\n (bignumberError + 'crypto unavailable');\r\n }\r\n } else {\r\n CRYPTO = v;\r\n }\r\n } else {\r\n throw Error\r\n (bignumberError + p + ' not true or false: ' + v);\r\n }\r\n }\r\n\r\n // MODULO_MODE {number} Integer, 0 to 9 inclusive.\r\n // '[BigNumber Error] MODULO_MODE {not a primitive number|not an integer|out of range}: {v}'\r\n if (obj.hasOwnProperty(p = 'MODULO_MODE')) {\r\n v = obj[p];\r\n intCheck(v, 0, 9, p);\r\n MODULO_MODE = v;\r\n }\r\n\r\n // POW_PRECISION {number} Integer, 0 to MAX inclusive.\r\n // '[BigNumber Error] POW_PRECISION {not a primitive number|not an integer|out of range}: {v}'\r\n if (obj.hasOwnProperty(p = 'POW_PRECISION')) {\r\n v = obj[p];\r\n intCheck(v, 0, MAX, p);\r\n POW_PRECISION = v;\r\n }\r\n\r\n // FORMAT {object}\r\n // '[BigNumber Error] FORMAT not an object: {v}'\r\n if (obj.hasOwnProperty(p = 'FORMAT')) {\r\n v = obj[p];\r\n if (typeof v == 'object') FORMAT = v;\r\n else throw Error\r\n (bignumberError + p + ' not an object: ' + v);\r\n }\r\n\r\n // ALPHABET {string}\r\n // '[BigNumber Error] ALPHABET invalid: {v}'\r\n if (obj.hasOwnProperty(p = 'ALPHABET')) {\r\n v = obj[p];\r\n\r\n // Disallow if less than two characters,\r\n // or if it contains '+', '-', '.', whitespace, or a repeated character.\r\n if (typeof v == 'string' && !/^.?$|[+\\-.\\s]|(.).*\\1/.test(v)) {\r\n alphabetHasNormalDecimalDigits = v.slice(0, 10) == '0123456789';\r\n ALPHABET = v;\r\n } else {\r\n throw Error\r\n (bignumberError + p + ' invalid: ' + v);\r\n }\r\n }\r\n\r\n } else {\r\n\r\n // '[BigNumber Error] Object expected: {v}'\r\n throw Error\r\n (bignumberError + 'Object expected: ' + obj);\r\n }\r\n }\r\n\r\n return {\r\n DECIMAL_PLACES: DECIMAL_PLACES,\r\n ROUNDING_MODE: ROUNDING_MODE,\r\n EXPONENTIAL_AT: [TO_EXP_NEG, TO_EXP_POS],\r\n RANGE: [MIN_EXP, MAX_EXP],\r\n CRYPTO: CRYPTO,\r\n MODULO_MODE: MODULO_MODE,\r\n POW_PRECISION: POW_PRECISION,\r\n FORMAT: FORMAT,\r\n ALPHABET: ALPHABET\r\n };\r\n };\r\n\r\n\r\n /*\r\n * Return true if v is a BigNumber instance, otherwise return false.\r\n *\r\n * If BigNumber.DEBUG is true, throw if a BigNumber instance is not well-formed.\r\n *\r\n * v {any}\r\n *\r\n * '[BigNumber Error] Invalid BigNumber: {v}'\r\n */\r\n BigNumber.isBigNumber = function (v) {\r\n if (!v || v._isBigNumber !== true) return false;\r\n if (!BigNumber.DEBUG) return true;\r\n\r\n var i, n,\r\n c = v.c,\r\n e = v.e,\r\n s = v.s;\r\n\r\n out: if ({}.toString.call(c) == '[object Array]') {\r\n\r\n if ((s === 1 || s === -1) && e >= -MAX && e <= MAX && e === mathfloor(e)) {\r\n\r\n // If the first element is zero, the BigNumber value must be zero.\r\n if (c[0] === 0) {\r\n if (e === 0 && c.length === 1) return true;\r\n break out;\r\n }\r\n\r\n // Calculate number of digits that c[0] should have, based on the exponent.\r\n i = (e + 1) % LOG_BASE;\r\n if (i < 1) i += LOG_BASE;\r\n\r\n // Calculate number of digits of c[0].\r\n //if (Math.ceil(Math.log(c[0] + 1) / Math.LN10) == i) {\r\n if (String(c[0]).length == i) {\r\n\r\n for (i = 0; i < c.length; i++) {\r\n n = c[i];\r\n if (n < 0 || n >= BASE || n !== mathfloor(n)) break out;\r\n }\r\n\r\n // Last element cannot be zero, unless it is the only element.\r\n if (n !== 0) return true;\r\n }\r\n }\r\n\r\n // Infinity/NaN\r\n } else if (c === null && e === null && (s === null || s === 1 || s === -1)) {\r\n return true;\r\n }\r\n\r\n throw Error\r\n (bignumberError + 'Invalid BigNumber: ' + v);\r\n };\r\n\r\n\r\n /*\r\n * Return a new BigNumber whose value is the maximum of the arguments.\r\n *\r\n * arguments {number|string|BigNumber}\r\n */\r\n BigNumber.maximum = BigNumber.max = function () {\r\n return maxOrMin(arguments, -1);\r\n };\r\n\r\n\r\n /*\r\n * Return a new BigNumber whose value is the minimum of the arguments.\r\n *\r\n * arguments {number|string|BigNumber}\r\n */\r\n BigNumber.minimum = BigNumber.min = function () {\r\n return maxOrMin(arguments, 1);\r\n };\r\n\r\n\r\n /*\r\n * Return a new BigNumber with a random value equal to or greater than 0 and less than 1,\r\n * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing\r\n * zeros are produced).\r\n *\r\n * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.\r\n *\r\n * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp}'\r\n * '[BigNumber Error] crypto unavailable'\r\n */\r\n BigNumber.random = (function () {\r\n var pow2_53 = 0x20000000000000;\r\n\r\n // Return a 53 bit integer n, where 0 <= n < 9007199254740992.\r\n // Check if Math.random() produces more than 32 bits of randomness.\r\n // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.\r\n // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.\r\n var random53bitInt = (Math.random() * pow2_53) & 0x1fffff\r\n ? function () { return mathfloor(Math.random() * pow2_53); }\r\n : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) +\r\n (Math.random() * 0x800000 | 0); };\r\n\r\n return function (dp) {\r\n var a, b, e, k, v,\r\n i = 0,\r\n c = [],\r\n rand = new BigNumber(ONE);\r\n\r\n if (dp == null) dp = DECIMAL_PLACES;\r\n else intCheck(dp, 0, MAX);\r\n\r\n k = mathceil(dp / LOG_BASE);\r\n\r\n if (CRYPTO) {\r\n\r\n // Browsers supporting crypto.getRandomValues.\r\n if (crypto.getRandomValues) {\r\n\r\n a = crypto.getRandomValues(new Uint32Array(k *= 2));\r\n\r\n for (; i < k;) {\r\n\r\n // 53 bits:\r\n // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)\r\n // 11111 11111111 11111111 11111111 11100000 00000000 00000000\r\n // ((Math.pow(2, 32) - 1) >>> 11).toString(2)\r\n // 11111 11111111 11111111\r\n // 0x20000 is 2^21.\r\n v = a[i] * 0x20000 + (a[i + 1] >>> 11);\r\n\r\n // Rejection sampling:\r\n // 0 <= v < 9007199254740992\r\n // Probability that v >= 9e15, is\r\n // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251\r\n if (v >= 9e15) {\r\n b = crypto.getRandomValues(new Uint32Array(2));\r\n a[i] = b[0];\r\n a[i + 1] = b[1];\r\n } else {\r\n\r\n // 0 <= v <= 8999999999999999\r\n // 0 <= (v % 1e14) <= 99999999999999\r\n c.push(v % 1e14);\r\n i += 2;\r\n }\r\n }\r\n i = k / 2;\r\n\r\n // Node.js supporting crypto.randomBytes.\r\n } else if (crypto.randomBytes) {\r\n\r\n // buffer\r\n a = crypto.randomBytes(k *= 7);\r\n\r\n for (; i < k;) {\r\n\r\n // 0x1000000000000 is 2^48, 0x10000000000 is 2^40\r\n // 0x100000000 is 2^32, 0x1000000 is 2^24\r\n // 11111 11111111 11111111 11111111 11111111 11111111 11111111\r\n // 0 <= v < 9007199254740992\r\n v = ((a[i] & 31) * 0x1000000000000) + (a[i + 1] * 0x10000000000) +\r\n (a[i + 2] * 0x100000000) + (a[i + 3] * 0x1000000) +\r\n (a[i + 4] << 16) + (a[i + 5] << 8) + a[i + 6];\r\n\r\n if (v >= 9e15) {\r\n crypto.randomBytes(7).copy(a, i);\r\n } else {\r\n\r\n // 0 <= (v % 1e14) <= 99999999999999\r\n c.push(v % 1e14);\r\n i += 7;\r\n }\r\n }\r\n i = k / 7;\r\n } else {\r\n CRYPTO = false;\r\n throw Error\r\n (bignumberError + 'crypto unavailable');\r\n }\r\n }\r\n\r\n // Use Math.random.\r\n if (!CRYPTO) {\r\n\r\n for (; i < k;) {\r\n v = random53bitInt();\r\n if (v < 9e15) c[i++] = v % 1e14;\r\n }\r\n }\r\n\r\n k = c[--i];\r\n dp %= LOG_BASE;\r\n\r\n // Convert trailing digits to zeros according to dp.\r\n if (k && dp) {\r\n v = POWS_TEN[LOG_BASE - dp];\r\n c[i] = mathfloor(k / v) * v;\r\n }\r\n\r\n // Remove trailing elements which are zero.\r\n for (; c[i] === 0; c.pop(), i--);\r\n\r\n // Zero?\r\n if (i < 0) {\r\n c = [e = 0];\r\n } else {\r\n\r\n // Remove leading elements which are zero and adjust exponent accordingly.\r\n for (e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE);\r\n\r\n // Count the digits of the first element of c to determine leading zeros, and...\r\n for (i = 1, v = c[0]; v >= 10; v /= 10, i++);\r\n\r\n // adjust the exponent accordingly.\r\n if (i < LOG_BASE) e -= LOG_BASE - i;\r\n }\r\n\r\n rand.e = e;\r\n rand.c = c;\r\n return rand;\r\n };\r\n })();\r\n\r\n\r\n /*\r\n * Return a BigNumber whose value is the sum of the arguments.\r\n *\r\n * arguments {number|string|BigNumber}\r\n */\r\n BigNumber.sum = function () {\r\n var i = 1,\r\n args = arguments,\r\n sum = new BigNumber(args[0]);\r\n for (; i < args.length;) sum = sum.plus(args[i++]);\r\n return sum;\r\n };\r\n\r\n\r\n // PRIVATE FUNCTIONS\r\n\r\n\r\n // Called by BigNumber and BigNumber.prototype.toString.\r\n convertBase = (function () {\r\n var decimal = '0123456789';\r\n\r\n /*\r\n * Convert string of baseIn to an array of numbers of baseOut.\r\n * Eg. toBaseOut('255', 10, 16) returns [15, 15].\r\n * Eg. toBaseOut('ff', 16, 10) returns [2, 5, 5].\r\n */\r\n function toBaseOut(str, baseIn, baseOut, alphabet) {\r\n var j,\r\n arr = [0],\r\n arrL,\r\n i = 0,\r\n len = str.length;\r\n\r\n for (; i < len;) {\r\n for (arrL = arr.length; arrL--; arr[arrL] *= baseIn);\r\n\r\n arr[0] += alphabet.indexOf(str.charAt(i++));\r\n\r\n for (j = 0; j < arr.length; j++) {\r\n\r\n if (arr[j] > baseOut - 1) {\r\n if (arr[j + 1] == null) arr[j + 1] = 0;\r\n arr[j + 1] += arr[j] / baseOut | 0;\r\n arr[j] %= baseOut;\r\n }\r\n }\r\n }\r\n\r\n return arr.reverse();\r\n }\r\n\r\n // Convert a numeric string of baseIn to a numeric string of baseOut.\r\n // If the caller is toString, we are converting from base 10 to baseOut.\r\n // If the caller is BigNumber, we are converting from baseIn to base 10.\r\n return function (str, baseIn, baseOut, sign, callerIsToString) {\r\n var alphabet, d, e, k, r, x, xc, y,\r\n i = str.indexOf('.'),\r\n dp = DECIMAL_PLACES,\r\n rm = ROUNDING_MODE;\r\n\r\n // Non-integer.\r\n if (i >= 0) {\r\n k = POW_PRECISION;\r\n\r\n // Unlimited precision.\r\n POW_PRECISION = 0;\r\n str = str.replace('.', '');\r\n y = new BigNumber(baseIn);\r\n x = y.pow(str.length - i);\r\n POW_PRECISION = k;\r\n\r\n // Convert str as if an integer, then restore the fraction part by dividing the\r\n // result by its base raised to a power.\r\n\r\n y.c = toBaseOut(toFixedPoint(coeffToString(x.c), x.e, '0'),\r\n 10, baseOut, decimal);\r\n y.e = y.c.length;\r\n }\r\n\r\n // Convert the number as integer.\r\n\r\n xc = toBaseOut(str, baseIn, baseOut, callerIsToString\r\n ? (alphabet = ALPHABET, decimal)\r\n : (alphabet = decimal, ALPHABET));\r\n\r\n // xc now represents str as an integer and converted to baseOut. e is the exponent.\r\n e = k = xc.length;\r\n\r\n // Remove trailing zeros.\r\n for (; xc[--k] == 0; xc.pop());\r\n\r\n // Zero?\r\n if (!xc[0]) return alphabet.charAt(0);\r\n\r\n // Does str represent an integer? If so, no need for the division.\r\n if (i < 0) {\r\n --e;\r\n } else {\r\n x.c = xc;\r\n x.e = e;\r\n\r\n // The sign is needed for correct rounding.\r\n x.s = sign;\r\n x = div(x, y, dp, rm, baseOut);\r\n xc = x.c;\r\n r = x.r;\r\n e = x.e;\r\n }\r\n\r\n // xc now represents str converted to baseOut.\r\n\r\n // THe index of the rounding digit.\r\n d = e + dp + 1;\r\n\r\n // The rounding digit: the digit to the right of the digit that may be rounded up.\r\n i = xc[d];\r\n\r\n // Look at the rounding digits and mode to determine whether to round up.\r\n\r\n k = baseOut / 2;\r\n r = r || d < 0 || xc[d + 1] != null;\r\n\r\n r = rm < 4 ? (i != null || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))\r\n : i > k || i == k &&(rm == 4 || r || rm == 6 && xc[d - 1] & 1 ||\r\n rm == (x.s < 0 ? 8 : 7));\r\n\r\n // If the index of the rounding digit is not greater than zero, or xc represents\r\n // zero, then the result of the base conversion is zero or, if rounding up, a value\r\n // such as 0.00001.\r\n if (d < 1 || !xc[0]) {\r\n\r\n // 1^-dp or 0\r\n str = r ? toFixedPoint(alphabet.charAt(1), -dp, alphabet.charAt(0)) : alphabet.charAt(0);\r\n } else {\r\n\r\n // Truncate xc to the required number of decimal places.\r\n xc.length = d;\r\n\r\n // Round up?\r\n if (r) {\r\n\r\n // Rounding up may mean the previous digit has to be rounded up and so on.\r\n for (--baseOut; ++xc[--d] > baseOut;) {\r\n xc[d] = 0;\r\n\r\n if (!d) {\r\n ++e;\r\n xc = [1].concat(xc);\r\n }\r\n }\r\n }\r\n\r\n // Determine trailing zeros.\r\n for (k = xc.length; !xc[--k];);\r\n\r\n // E.g. [4, 11, 15] becomes 4bf.\r\n for (i = 0, str = ''; i <= k; str += alphabet.charAt(xc[i++]));\r\n\r\n // Add leading zeros, decimal point and trailing zeros as required.\r\n str = toFixedPoint(str, e, alphabet.charAt(0));\r\n }\r\n\r\n // The caller will add the sign.\r\n return str;\r\n };\r\n })();\r\n\r\n\r\n // Perform division in the specified base. Called by div and convertBase.\r\n div = (function () {\r\n\r\n // Assume non-zero x and k.\r\n function multiply(x, k, base) {\r\n var m, temp, xlo, xhi,\r\n carry = 0,\r\n i = x.length,\r\n klo = k % SQRT_BASE,\r\n khi = k / SQRT_BASE | 0;\r\n\r\n for (x = x.slice(); i--;) {\r\n xlo = x[i] % SQRT_BASE;\r\n xhi = x[i] / SQRT_BASE | 0;\r\n m = khi * xlo + xhi * klo;\r\n temp = klo * xlo + ((m % SQRT_BASE) * SQRT_BASE) + carry;\r\n carry = (temp / base | 0) + (m / SQRT_BASE | 0) + khi * xhi;\r\n x[i] = temp % base;\r\n }\r\n\r\n if (carry) x = [carry].concat(x);\r\n\r\n return x;\r\n }\r\n\r\n function compare(a, b, aL, bL) {\r\n var i, cmp;\r\n\r\n if (aL != bL) {\r\n cmp = aL > bL ? 1 : -1;\r\n } else {\r\n\r\n for (i = cmp = 0; i < aL; i++) {\r\n\r\n if (a[i] != b[i]) {\r\n cmp = a[i] > b[i] ? 1 : -1;\r\n break;\r\n }\r\n }\r\n }\r\n\r\n return cmp;\r\n }\r\n\r\n function subtract(a, b, aL, base) {\r\n var i = 0;\r\n\r\n // Subtract b from a.\r\n for (; aL--;) {\r\n a[aL] -= i;\r\n i = a[aL] < b[aL] ? 1 : 0;\r\n a[aL] = i * base + a[aL] - b[aL];\r\n }\r\n\r\n // Remove leading zeros.\r\n for (; !a[0] && a.length > 1; a.splice(0, 1));\r\n }\r\n\r\n // x: dividend, y: divisor.\r\n return function (x, y, dp, rm, base) {\r\n var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0,\r\n yL, yz,\r\n s = x.s == y.s ? 1 : -1,\r\n xc = x.c,\r\n yc = y.c;\r\n\r\n // Either NaN, Infinity or 0?\r\n if (!xc || !xc[0] || !yc || !yc[0]) {\r\n\r\n return new BigNumber(\r\n\r\n // Return NaN if either NaN, or both Infinity or 0.\r\n !x.s || !y.s || (xc ? yc && xc[0] == yc[0] : !yc) ? NaN :\r\n\r\n // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.\r\n xc && xc[0] == 0 || !yc ? s * 0 : s / 0\r\n );\r\n }\r\n\r\n q = new BigNumber(s);\r\n qc = q.c = [];\r\n e = x.e - y.e;\r\n s = dp + e + 1;\r\n\r\n if (!base) {\r\n base = BASE;\r\n e = bitFloor(x.e / LOG_BASE) - bitFloor(y.e / LOG_BASE);\r\n s = s / LOG_BASE | 0;\r\n }\r\n\r\n // Result exponent may be one less then the current value of e.\r\n // The coefficients of the BigNumbers from convertBase may have trailing zeros.\r\n for (i = 0; yc[i] == (xc[i] || 0); i++);\r\n\r\n if (yc[i] > (xc[i] || 0)) e--;\r\n\r\n if (s < 0) {\r\n qc.push(1);\r\n more = true;\r\n } else {\r\n xL = xc.length;\r\n yL = yc.length;\r\n i = 0;\r\n s += 2;\r\n\r\n // Normalise xc and yc so highest order digit of yc is >= base / 2.\r\n\r\n n = mathfloor(base / (yc[0] + 1));\r\n\r\n // Not necessary, but to handle odd bases where yc[0] == (base / 2) - 1.\r\n // if (n > 1 || n++ == 1 && yc[0] < base / 2) {\r\n if (n > 1) {\r\n yc = multiply(yc, n, base);\r\n xc = multiply(xc, n, base);\r\n yL = yc.length;\r\n xL = xc.length;\r\n }\r\n\r\n xi = yL;\r\n rem = xc.slice(0, yL);\r\n remL = rem.length;\r\n\r\n // Add zeros to make remainder as long as divisor.\r\n for (; remL < yL; rem[remL++] = 0);\r\n yz = yc.slice();\r\n yz = [0].concat(yz);\r\n yc0 = yc[0];\r\n if (yc[1] >= base / 2) yc0++;\r\n // Not necessary, but to prevent trial digit n > base, when using base 3.\r\n // else if (base == 3 && yc0 == 1) yc0 = 1 + 1e-15;\r\n\r\n do {\r\n n = 0;\r\n\r\n // Compare divisor and remainder.\r\n cmp = compare(yc, rem, yL, remL);\r\n\r\n // If divisor < remainder.\r\n if (cmp < 0) {\r\n\r\n // Calculate trial digit, n.\r\n\r\n rem0 = rem[0];\r\n if (yL != remL) rem0 = rem0 * base + (rem[1] || 0);\r\n\r\n // n is how many times the divisor goes into the current remainder.\r\n n = mathfloor(rem0 / yc0);\r\n\r\n // Algorithm:\r\n // product = divisor multiplied by trial digit (n).\r\n // Compare product and remainder.\r\n // If product is greater than remainder:\r\n // Subtract divisor from product, decrement trial digit.\r\n // Subtract product from remainder.\r\n // If product was less than remainder at the last compare:\r\n // Compare new remainder and divisor.\r\n // If remainder is greater than divisor:\r\n // Subtract divisor from remainder, increment trial digit.\r\n\r\n if (n > 1) {\r\n\r\n // n may be > base only when base is 3.\r\n if (n >= base) n = base - 1;\r\n\r\n // product = divisor * trial digit.\r\n prod = multiply(yc, n, base);\r\n prodL = prod.length;\r\n remL = rem.length;\r\n\r\n // Compare product and remainder.\r\n // If product > remainder then trial digit n too high.\r\n // n is 1 too high about 5% of the time, and is not known to have\r\n // ever been more than 1 too high.\r\n while (compare(prod, rem, prodL, remL) == 1) {\r\n n--;\r\n\r\n // Subtract divisor from product.\r\n subtract(prod, yL < prodL ? yz : yc, prodL, base);\r\n prodL = prod.length;\r\n cmp = 1;\r\n }\r\n } else {\r\n\r\n // n is 0 or 1, cmp is -1.\r\n // If n is 0, there is no need to compare yc and rem again below,\r\n // so change cmp to 1 to avoid it.\r\n // If n is 1, leave cmp as -1, so yc and rem are compared again.\r\n if (n == 0) {\r\n\r\n // divisor < remainder, so n must be at least 1.\r\n cmp = n = 1;\r\n }\r\n\r\n // product = divisor\r\n prod = yc.slice();\r\n prodL = prod.length;\r\n }\r\n\r\n if (prodL < remL) prod = [0].concat(prod);\r\n\r\n // Subtract product from remainder.\r\n subtract(rem, prod, remL, base);\r\n remL = rem.length;\r\n\r\n // If product was < remainder.\r\n if (cmp == -1) {\r\n\r\n // Compare divisor and new remainder.\r\n // If divisor < new remainder, subtract divisor from remainder.\r\n // Trial digit n too low.\r\n // n is 1 too low about 5% of the time, and very rarely 2 too low.\r\n while (compare(yc, rem, yL, remL) < 1) {\r\n n++;\r\n\r\n // Subtract divisor from remainder.\r\n subtract(rem, yL < remL ? yz : yc, remL, base);\r\n remL = rem.length;\r\n }\r\n }\r\n } else if (cmp === 0) {\r\n n++;\r\n rem = [0];\r\n } // else cmp === 1 and n will be 0\r\n\r\n // Add the next digit, n, to the result array.\r\n qc[i++] = n;\r\n\r\n // Update the remainder.\r\n if (rem[0]) {\r\n rem[remL++] = xc[xi] || 0;\r\n } else {\r\n rem = [xc[xi]];\r\n remL = 1;\r\n }\r\n } while ((xi++ < xL || rem[0] != null) && s--);\r\n\r\n more = rem[0] != null;\r\n\r\n // Leading zero?\r\n if (!qc[0]) qc.splice(0, 1);\r\n }\r\n\r\n if (base == BASE) {\r\n\r\n // To calculate q.e, first get the number of digits of qc[0].\r\n for (i = 1, s = qc[0]; s >= 10; s /= 10, i++);\r\n\r\n round(q, dp + (q.e = i + e * LOG_BASE - 1) + 1, rm, more);\r\n\r\n // Caller is convertBase.\r\n } else {\r\n q.e = e;\r\n q.r = +more;\r\n }\r\n\r\n return q;\r\n };\r\n })();\r\n\r\n\r\n /*\r\n * Return a string representing the value of BigNumber n in fixed-point or exponential\r\n * notation rounded to the specified decimal places or significant digits.\r\n *\r\n * n: a BigNumber.\r\n * i: the index of the last digit required (i.e. the digit that may be rounded up).\r\n * rm: the rounding mode.\r\n * id: 1 (toExponential) or 2 (toPrecision).\r\n */\r\n function format(n, i, rm, id) {\r\n var c0, e, ne, len, str;\r\n\r\n if (rm == null) rm = ROUNDING_MODE;\r\n else intCheck(rm, 0, 8);\r\n\r\n if (!n.c) return n.toString();\r\n\r\n c0 = n.c[0];\r\n ne = n.e;\r\n\r\n if (i == null) {\r\n str = coeffToString(n.c);\r\n str = id == 1 || id == 2 && (ne <= TO_EXP_NEG || ne >= TO_EXP_POS)\r\n ? toExponential(str, ne)\r\n : toFixedPoint(str, ne, '0');\r\n } else {\r\n n = round(new BigNumber(n), i, rm);\r\n\r\n // n.e may have changed if the value was rounded up.\r\n e = n.e;\r\n\r\n str = coeffToString(n.c);\r\n len = str.length;\r\n\r\n // toPrecision returns exponential notation if the number of significant digits\r\n // specified is less than the number of digits necessary to represent the integer\r\n // part of the value in fixed-point notation.\r\n\r\n // Exponential notation.\r\n if (id == 1 || id == 2 && (i <= e || e <= TO_EXP_NEG)) {\r\n\r\n // Append zeros?\r\n for (; len < i; str += '0', len++);\r\n str = toExponential(str, e);\r\n\r\n // Fixed-point notation.\r\n } else {\r\n i -= ne;\r\n str = toFixedPoint(str, e, '0');\r\n\r\n // Append zeros?\r\n if (e + 1 > len) {\r\n if (--i > 0) for (str += '.'; i--; str += '0');\r\n } else {\r\n i += e - len;\r\n if (i > 0) {\r\n if (e + 1 == len) str += '.';\r\n for (; i--; str += '0');\r\n }\r\n }\r\n }\r\n }\r\n\r\n return n.s < 0 && c0 ? '-' + str : str;\r\n }\r\n\r\n\r\n // Handle BigNumber.max and BigNumber.min.\r\n // If any number is NaN, return NaN.\r\n function maxOrMin(args, n) {\r\n var k, y,\r\n i = 1,\r\n x = new BigNumber(args[0]);\r\n\r\n for (; i < args.length; i++) {\r\n y = new BigNumber(args[i]);\r\n if (!y.s || (k = compare(x, y)) === n || k === 0 && x.s === n) {\r\n x = y;\r\n }\r\n }\r\n\r\n return x;\r\n }\r\n\r\n\r\n /*\r\n * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP.\r\n * Called by minus, plus and times.\r\n */\r\n function normalise(n, c, e) {\r\n var i = 1,\r\n j = c.length;\r\n\r\n // Remove trailing zeros.\r\n for (; !c[--j]; c.pop());\r\n\r\n // Calculate the base 10 exponent. First get the number of digits of c[0].\r\n for (j = c[0]; j >= 10; j /= 10, i++);\r\n\r\n // Overflow?\r\n if ((e = i + e * LOG_BASE - 1) > MAX_EXP) {\r\n\r\n // Infinity.\r\n n.c = n.e = null;\r\n\r\n // Underflow?\r\n } else if (e < MIN_EXP) {\r\n\r\n // Zero.\r\n n.c = [n.e = 0];\r\n } else {\r\n n.e = e;\r\n n.c = c;\r\n }\r\n\r\n return n;\r\n }\r\n\r\n\r\n // Handle values that fail the validity test in BigNumber.\r\n parseNumeric = (function () {\r\n var basePrefix = /^(-?)0([xbo])(?=\\w[\\w.]*$)/i,\r\n dotAfter = /^([^.]+)\\.$/,\r\n dotBefore = /^\\.([^.]+)$/,\r\n isInfinityOrNaN = /^-?(Infinity|NaN)$/,\r\n whitespaceOrPlus = /^\\s*\\+(?=[\\w.])|^\\s+|\\s+$/g;\r\n\r\n return function (x, str, isNum, b) {\r\n var base,\r\n s = isNum ? str : str.replace(whitespaceOrPlus, '');\r\n\r\n // No exception on ±Infinity or NaN.\r\n if (isInfinityOrNaN.test(s)) {\r\n x.s = isNaN(s) ? null : s < 0 ? -1 : 1;\r\n } else {\r\n if (!isNum) {\r\n\r\n // basePrefix = /^(-?)0([xbo])(?=\\w[\\w.]*$)/i\r\n s = s.replace(basePrefix, function (m, p1, p2) {\r\n base = (p2 = p2.toLowerCase()) == 'x' ? 16 : p2 == 'b' ? 2 : 8;\r\n return !b || b == base ? p1 : m;\r\n });\r\n\r\n if (b) {\r\n base = b;\r\n\r\n // E.g. '1.' to '1', '.1' to '0.1'\r\n s = s.replace(dotAfter, '$1').replace(dotBefore, '0.$1');\r\n }\r\n\r\n if (str != s) return new BigNumber(s, base);\r\n }\r\n\r\n // '[BigNumber Error] Not a number: {n}'\r\n // '[BigNumber Error] Not a base {b} number: {n}'\r\n if (BigNumber.DEBUG) {\r\n throw Error\r\n (bignumberError + 'Not a' + (b ? ' base ' + b : '') + ' number: ' + str);\r\n }\r\n\r\n // NaN\r\n x.s = null;\r\n }\r\n\r\n x.c = x.e = null;\r\n }\r\n })();\r\n\r\n\r\n /*\r\n * Round x to sd significant digits using rounding mode rm. Check for over/under-flow.\r\n * If r is truthy, it is known that there are more digits after the rounding digit.\r\n */\r\n function round(x, sd, rm, r) {\r\n var d, i, j, k, n, ni, rd,\r\n xc = x.c,\r\n pows10 = POWS_TEN;\r\n\r\n // if x is not Infinity or NaN...\r\n if (xc) {\r\n\r\n // rd is the rounding digit, i.e. the digit after the digit that may be rounded up.\r\n // n is a base 1e14 number, the value of the element of array x.c containing rd.\r\n // ni is the index of n within x.c.\r\n // d is the number of digits of n.\r\n // i is the index of rd within n including leading zeros.\r\n // j is the actual index of rd within n (if < 0, rd is a leading zero).\r\n out: {\r\n\r\n // Get the number of digits of the first element of xc.\r\n for (d = 1, k = xc[0]; k >= 10; k /= 10, d++);\r\n i = sd - d;\r\n\r\n // If the rounding digit i