UNPKG

@dimforge/rapier3d

Version:

3-dimensional physics engine in Rust - official JS bindings.

1,330 lines (1,151 loc) 37 kB
import {Vector, VectorOps, Rotation, RotationOps} from "../math"; import {RawColliderSet, RawShape, RawShapeType} from "../raw"; import {ShapeContact} from "./contact"; import {PointProjection} from "./point"; import {Ray, RayIntersection} from "./ray"; import {ShapeCastHit} from "./toi"; import {ColliderHandle} from "./collider"; export abstract class Shape { public abstract intoRaw(): RawShape; /** * The concrete type of this shape. */ public abstract get type(): ShapeType; /** * instant mode without cache */ public static fromRaw( rawSet: RawColliderSet, handle: ColliderHandle, ): Shape { const rawType = rawSet.coShapeType(handle); let extents: Vector; let borderRadius: number; let vs: Float32Array; let indices: Uint32Array; let halfHeight: number; let radius: number; let normal: Vector; switch (rawType) { case RawShapeType.Ball: return new Ball(rawSet.coRadius(handle)); case RawShapeType.Cuboid: extents = rawSet.coHalfExtents(handle); // #if DIM3 return new Cuboid(extents.x, extents.y, extents.z); // #endif case RawShapeType.RoundCuboid: extents = rawSet.coHalfExtents(handle); borderRadius = rawSet.coRoundRadius(handle); // #if DIM3 return new RoundCuboid( extents.x, extents.y, extents.z, borderRadius, ); // #endif case RawShapeType.Capsule: halfHeight = rawSet.coHalfHeight(handle); radius = rawSet.coRadius(handle); return new Capsule(halfHeight, radius); case RawShapeType.Segment: vs = rawSet.coVertices(handle); // #if DIM3 return new Segment( VectorOps.new(vs[0], vs[1], vs[2]), VectorOps.new(vs[3], vs[4], vs[5]), ); // #endif case RawShapeType.Polyline: vs = rawSet.coVertices(handle); indices = rawSet.coIndices(handle); return new Polyline(vs, indices); case RawShapeType.Triangle: vs = rawSet.coVertices(handle); // #if DIM3 return new Triangle( VectorOps.new(vs[0], vs[1], vs[2]), VectorOps.new(vs[3], vs[4], vs[5]), VectorOps.new(vs[6], vs[7], vs[8]), ); // #endif case RawShapeType.RoundTriangle: vs = rawSet.coVertices(handle); borderRadius = rawSet.coRoundRadius(handle); // #if DIM3 return new RoundTriangle( VectorOps.new(vs[0], vs[1], vs[2]), VectorOps.new(vs[3], vs[4], vs[5]), VectorOps.new(vs[6], vs[7], vs[8]), borderRadius, ); // #endif case RawShapeType.HalfSpace: normal = VectorOps.fromRaw(rawSet.coHalfspaceNormal(handle)); return new HalfSpace(normal); case RawShapeType.Voxels: const vox_data = rawSet.coVoxelData(handle); const vox_size = rawSet.coVoxelSize(handle); return new Voxels(vox_data, vox_size); case RawShapeType.TriMesh: vs = rawSet.coVertices(handle); indices = rawSet.coIndices(handle); const tri_flags = rawSet.coTriMeshFlags(handle); return new TriMesh(vs, indices, tri_flags); case RawShapeType.HeightField: const scale = rawSet.coHeightfieldScale(handle); const heights = rawSet.coHeightfieldHeights(handle); // #if DIM3 const nrows = rawSet.coHeightfieldNRows(handle); const ncols = rawSet.coHeightfieldNCols(handle); const hf_flags = rawSet.coHeightFieldFlags(handle); return new Heightfield(nrows, ncols, heights, scale, hf_flags); // #endif // #if DIM3 case RawShapeType.ConvexPolyhedron: vs = rawSet.coVertices(handle); indices = rawSet.coIndices(handle); return new ConvexPolyhedron(vs, indices); case RawShapeType.RoundConvexPolyhedron: vs = rawSet.coVertices(handle); indices = rawSet.coIndices(handle); borderRadius = rawSet.coRoundRadius(handle); return new RoundConvexPolyhedron(vs, indices, borderRadius); case RawShapeType.Cylinder: halfHeight = rawSet.coHalfHeight(handle); radius = rawSet.coRadius(handle); return new Cylinder(halfHeight, radius); case RawShapeType.RoundCylinder: halfHeight = rawSet.coHalfHeight(handle); radius = rawSet.coRadius(handle); borderRadius = rawSet.coRoundRadius(handle); return new RoundCylinder(halfHeight, radius, borderRadius); case RawShapeType.Cone: halfHeight = rawSet.coHalfHeight(handle); radius = rawSet.coRadius(handle); return new Cone(halfHeight, radius); case RawShapeType.RoundCone: halfHeight = rawSet.coHalfHeight(handle); radius = rawSet.coRadius(handle); borderRadius = rawSet.coRoundRadius(handle); return new RoundCone(halfHeight, radius, borderRadius); // #endif default: throw new Error("unknown shape type: " + rawType); } } /** * Computes the time of impact between two moving shapes. * @param shapePos1 - The initial position of this sahpe. * @param shapeRot1 - The rotation of this shape. * @param shapeVel1 - The velocity of this shape. * @param shape2 - The second moving shape. * @param shapePos2 - The initial position of the second shape. * @param shapeRot2 - The rotation of the second shape. * @param shapeVel2 - The velocity of the second shape. * @param targetDistance − If the shape moves closer to this distance from a collider, a hit * will be returned. * @param maxToi - The maximum time when the impact can happen. * @param stopAtPenetration - If set to `false`, the linear shape-cast won’t immediately stop if * the shape is penetrating another shape at its starting point **and** its trajectory is such * that it’s on a path to exit that penetration state. * @returns If the two moving shapes collider at some point along their trajectories, this returns the * time at which the two shape collider as well as the contact information during the impact. Returns * `null`if the two shapes never collide along their paths. */ public castShape( shapePos1: Vector, shapeRot1: Rotation, shapeVel1: Vector, shape2: Shape, shapePos2: Vector, shapeRot2: Rotation, shapeVel2: Vector, targetDistance: number, maxToi: number, stopAtPenetration: boolean, ): ShapeCastHit | null { let rawPos1 = VectorOps.intoRaw(shapePos1); let rawRot1 = RotationOps.intoRaw(shapeRot1); let rawVel1 = VectorOps.intoRaw(shapeVel1); let rawPos2 = VectorOps.intoRaw(shapePos2); let rawRot2 = RotationOps.intoRaw(shapeRot2); let rawVel2 = VectorOps.intoRaw(shapeVel2); let rawShape1 = this.intoRaw(); let rawShape2 = shape2.intoRaw(); let result = ShapeCastHit.fromRaw( null, rawShape1.castShape( rawPos1, rawRot1, rawVel1, rawShape2, rawPos2, rawRot2, rawVel2, targetDistance, maxToi, stopAtPenetration, ), ); rawPos1.free(); rawRot1.free(); rawVel1.free(); rawPos2.free(); rawRot2.free(); rawVel2.free(); rawShape1.free(); rawShape2.free(); return result; } /** * Tests if this shape intersects another shape. * * @param shapePos1 - The position of this shape. * @param shapeRot1 - The rotation of this shape. * @param shape2 - The second shape to test. * @param shapePos2 - The position of the second shape. * @param shapeRot2 - The rotation of the second shape. * @returns `true` if the two shapes intersect, `false` if they don’t. */ public intersectsShape( shapePos1: Vector, shapeRot1: Rotation, shape2: Shape, shapePos2: Vector, shapeRot2: Rotation, ): boolean { let rawPos1 = VectorOps.intoRaw(shapePos1); let rawRot1 = RotationOps.intoRaw(shapeRot1); let rawPos2 = VectorOps.intoRaw(shapePos2); let rawRot2 = RotationOps.intoRaw(shapeRot2); let rawShape1 = this.intoRaw(); let rawShape2 = shape2.intoRaw(); let result = rawShape1.intersectsShape( rawPos1, rawRot1, rawShape2, rawPos2, rawRot2, ); rawPos1.free(); rawRot1.free(); rawPos2.free(); rawRot2.free(); rawShape1.free(); rawShape2.free(); return result; } /** * Computes one pair of contact points between two shapes. * * @param shapePos1 - The initial position of this sahpe. * @param shapeRot1 - The rotation of this shape. * @param shape2 - The second shape. * @param shapePos2 - The initial position of the second shape. * @param shapeRot2 - The rotation of the second shape. * @param prediction - The prediction value, if the shapes are separated by a distance greater than this value, test will fail. * @returns `null` if the shapes are separated by a distance greater than prediction, otherwise contact details. The result is given in world-space. */ contactShape( shapePos1: Vector, shapeRot1: Rotation, shape2: Shape, shapePos2: Vector, shapeRot2: Rotation, prediction: number, ): ShapeContact | null { let rawPos1 = VectorOps.intoRaw(shapePos1); let rawRot1 = RotationOps.intoRaw(shapeRot1); let rawPos2 = VectorOps.intoRaw(shapePos2); let rawRot2 = RotationOps.intoRaw(shapeRot2); let rawShape1 = this.intoRaw(); let rawShape2 = shape2.intoRaw(); let result = ShapeContact.fromRaw( rawShape1.contactShape( rawPos1, rawRot1, rawShape2, rawPos2, rawRot2, prediction, ), ); rawPos1.free(); rawRot1.free(); rawPos2.free(); rawRot2.free(); rawShape1.free(); rawShape2.free(); return result; } containsPoint( shapePos: Vector, shapeRot: Rotation, point: Vector, ): boolean { let rawPos = VectorOps.intoRaw(shapePos); let rawRot = RotationOps.intoRaw(shapeRot); let rawPoint = VectorOps.intoRaw(point); let rawShape = this.intoRaw(); let result = rawShape.containsPoint(rawPos, rawRot, rawPoint); rawPos.free(); rawRot.free(); rawPoint.free(); rawShape.free(); return result; } projectPoint( shapePos: Vector, shapeRot: Rotation, point: Vector, solid: boolean, ): PointProjection { let rawPos = VectorOps.intoRaw(shapePos); let rawRot = RotationOps.intoRaw(shapeRot); let rawPoint = VectorOps.intoRaw(point); let rawShape = this.intoRaw(); let result = PointProjection.fromRaw( rawShape.projectPoint(rawPos, rawRot, rawPoint, solid), ); rawPos.free(); rawRot.free(); rawPoint.free(); rawShape.free(); return result; } intersectsRay( ray: Ray, shapePos: Vector, shapeRot: Rotation, maxToi: number, ): boolean { let rawPos = VectorOps.intoRaw(shapePos); let rawRot = RotationOps.intoRaw(shapeRot); let rawRayOrig = VectorOps.intoRaw(ray.origin); let rawRayDir = VectorOps.intoRaw(ray.dir); let rawShape = this.intoRaw(); let result = rawShape.intersectsRay( rawPos, rawRot, rawRayOrig, rawRayDir, maxToi, ); rawPos.free(); rawRot.free(); rawRayOrig.free(); rawRayDir.free(); rawShape.free(); return result; } castRay( ray: Ray, shapePos: Vector, shapeRot: Rotation, maxToi: number, solid: boolean, ): number { let rawPos = VectorOps.intoRaw(shapePos); let rawRot = RotationOps.intoRaw(shapeRot); let rawRayOrig = VectorOps.intoRaw(ray.origin); let rawRayDir = VectorOps.intoRaw(ray.dir); let rawShape = this.intoRaw(); let result = rawShape.castRay( rawPos, rawRot, rawRayOrig, rawRayDir, maxToi, solid, ); rawPos.free(); rawRot.free(); rawRayOrig.free(); rawRayDir.free(); rawShape.free(); return result; } castRayAndGetNormal( ray: Ray, shapePos: Vector, shapeRot: Rotation, maxToi: number, solid: boolean, ): RayIntersection { let rawPos = VectorOps.intoRaw(shapePos); let rawRot = RotationOps.intoRaw(shapeRot); let rawRayOrig = VectorOps.intoRaw(ray.origin); let rawRayDir = VectorOps.intoRaw(ray.dir); let rawShape = this.intoRaw(); let result = RayIntersection.fromRaw( rawShape.castRayAndGetNormal( rawPos, rawRot, rawRayOrig, rawRayDir, maxToi, solid, ), ); rawPos.free(); rawRot.free(); rawRayOrig.free(); rawRayDir.free(); rawShape.free(); return result; } } // #if DIM3 /** * An enumeration representing the type of a shape. */ export enum ShapeType { Ball = 0, Cuboid = 1, Capsule = 2, Segment = 3, Polyline = 4, Triangle = 5, TriMesh = 6, HeightField = 7, // Compound = 8, ConvexPolyhedron = 9, Cylinder = 10, Cone = 11, RoundCuboid = 12, RoundTriangle = 13, RoundCylinder = 14, RoundCone = 15, RoundConvexPolyhedron = 16, HalfSpace = 17, Voxels = 18, } // NOTE: this **must** match the bits in the HeightFieldFlags on the rust side. /** * Flags controlling the behavior of some operations involving heightfields. */ export enum HeightFieldFlags { /** * If set, a special treatment will be applied to contact manifold calculation to eliminate * or fix contacts normals that could lead to incorrect bumps in physics simulation (especially * on flat surfaces). * * This is achieved by taking into account adjacent triangle normals when computing contact * points for a given triangle. */ FIX_INTERNAL_EDGES = 0b0000_0001, } // #endif // NOTE: this **must** match the TriMeshFlags on the rust side. /** * Flags controlling the behavior of the triangle mesh creation and of some * operations involving triangle meshes. */ export enum TriMeshFlags { // NOTE: these two flags are not really useful in JS. // // /** // * If set, the half-edge topology of the trimesh will be computed if possible. // */ // HALF_EDGE_TOPOLOGY = 0b0000_0001, // /** If set, the half-edge topology and connected components of the trimesh will be computed if possible. // * // * Because of the way it is currently implemented, connected components can only be computed on // * a mesh where the half-edge topology computation succeeds. It will no longer be the case in the // * future once we decouple the computations. // */ // CONNECTED_COMPONENTS = 0b0000_0010, /** * If set, any triangle that results in a failing half-hedge topology computation will be deleted. */ DELETE_BAD_TOPOLOGY_TRIANGLES = 0b0000_0100, /** * If set, the trimesh will be assumed to be oriented (with outward normals). * * The pseudo-normals of its vertices and edges will be computed. */ ORIENTED = 0b0000_1000, /** * If set, the duplicate vertices of the trimesh will be merged. * * Two vertices with the exact same coordinates will share the same entry on the * vertex buffer and the index buffer is adjusted accordingly. */ MERGE_DUPLICATE_VERTICES = 0b0001_0000, /** * If set, the triangles sharing two vertices with identical index values will be removed. * * Because of the way it is currently implemented, this methods implies that duplicate * vertices will be merged. It will no longer be the case in the future once we decouple * the computations. */ DELETE_DEGENERATE_TRIANGLES = 0b0010_0000, /** * If set, two triangles sharing three vertices with identical index values (in any order) * will be removed. * * Because of the way it is currently implemented, this methods implies that duplicate * vertices will be merged. It will no longer be the case in the future once we decouple * the computations. */ DELETE_DUPLICATE_TRIANGLES = 0b0100_0000, /** * If set, a special treatment will be applied to contact manifold calculation to eliminate * or fix contacts normals that could lead to incorrect bumps in physics simulation * (especially on flat surfaces). * * This is achieved by taking into account adjacent triangle normals when computing contact * points for a given triangle. * * /!\ NOT SUPPORTED IN THE 2D VERSION OF RAPIER. */ FIX_INTERNAL_EDGES = 0b1000_0000 | TriMeshFlags.MERGE_DUPLICATE_VERTICES, } /** * A shape that is a sphere in 3D and a circle in 2D. */ export class Ball extends Shape { readonly type = ShapeType.Ball; /** * The balls radius. */ radius: number; /** * Creates a new ball with the given radius. * @param radius - The balls radius. */ constructor(radius: number) { super(); this.radius = radius; } public intoRaw(): RawShape { return RawShape.ball(this.radius); } } export class HalfSpace extends Shape { readonly type = ShapeType.HalfSpace; /** * The outward normal of the half-space. */ normal: Vector; /** * Creates a new halfspace delimited by an infinite plane. * * @param normal - The outward normal of the plane. */ constructor(normal: Vector) { super(); this.normal = normal; } public intoRaw(): RawShape { let n = VectorOps.intoRaw(this.normal); let result = RawShape.halfspace(n); n.free(); return result; } } /** * A shape that is a box in 3D and a rectangle in 2D. */ export class Cuboid extends Shape { readonly type = ShapeType.Cuboid; /** * The half extent of the cuboid along each coordinate axis. */ halfExtents: Vector; // #if DIM3 /** * Creates a new 3D cuboid. * @param hx - The half width of the cuboid. * @param hy - The half height of the cuboid. * @param hz - The half depth of the cuboid. */ constructor(hx: number, hy: number, hz: number) { super(); this.halfExtents = VectorOps.new(hx, hy, hz); } // #endif public intoRaw(): RawShape { // #if DIM3 return RawShape.cuboid( this.halfExtents.x, this.halfExtents.y, this.halfExtents.z, ); // #endif } } /** * A shape that is a box in 3D and a rectangle in 2D, with round corners. */ export class RoundCuboid extends Shape { readonly type = ShapeType.RoundCuboid; /** * The half extent of the cuboid along each coordinate axis. */ halfExtents: Vector; /** * The radius of the cuboid's round border. */ borderRadius: number; // #if DIM3 /** * Creates a new 3D cuboid. * @param hx - The half width of the cuboid. * @param hy - The half height of the cuboid. * @param hz - The half depth of the cuboid. * @param borderRadius - The radius of the borders of this cuboid. This will * effectively increase the half-extents of the cuboid by this radius. */ constructor(hx: number, hy: number, hz: number, borderRadius: number) { super(); this.halfExtents = VectorOps.new(hx, hy, hz); this.borderRadius = borderRadius; } // #endif public intoRaw(): RawShape { // #if DIM3 return RawShape.roundCuboid( this.halfExtents.x, this.halfExtents.y, this.halfExtents.z, this.borderRadius, ); // #endif } } /** * A shape that is a capsule. */ export class Capsule extends Shape { readonly type = ShapeType.Capsule; /** * The radius of the capsule's basis. */ radius: number; /** * The capsule's half height, along the `y` axis. */ halfHeight: number; /** * Creates a new capsule with the given radius and half-height. * @param halfHeight - The balls half-height along the `y` axis. * @param radius - The balls radius. */ constructor(halfHeight: number, radius: number) { super(); this.halfHeight = halfHeight; this.radius = radius; } public intoRaw(): RawShape { return RawShape.capsule(this.halfHeight, this.radius); } } /** * A shape that is a segment. */ export class Segment extends Shape { readonly type = ShapeType.Segment; /** * The first point of the segment. */ a: Vector; /** * The second point of the segment. */ b: Vector; /** * Creates a new segment shape. * @param a - The first point of the segment. * @param b - The second point of the segment. */ constructor(a: Vector, b: Vector) { super(); this.a = a; this.b = b; } public intoRaw(): RawShape { let ra = VectorOps.intoRaw(this.a); let rb = VectorOps.intoRaw(this.b); let result = RawShape.segment(ra, rb); ra.free(); rb.free(); return result; } } /** * A shape that is a segment. */ export class Triangle extends Shape { readonly type = ShapeType.Triangle; /** * The first point of the triangle. */ a: Vector; /** * The second point of the triangle. */ b: Vector; /** * The second point of the triangle. */ c: Vector; /** * Creates a new triangle shape. * * @param a - The first point of the triangle. * @param b - The second point of the triangle. * @param c - The third point of the triangle. */ constructor(a: Vector, b: Vector, c: Vector) { super(); this.a = a; this.b = b; this.c = c; } public intoRaw(): RawShape { let ra = VectorOps.intoRaw(this.a); let rb = VectorOps.intoRaw(this.b); let rc = VectorOps.intoRaw(this.c); let result = RawShape.triangle(ra, rb, rc); ra.free(); rb.free(); rc.free(); return result; } } /** * A shape that is a triangle with round borders and a non-zero thickness. */ export class RoundTriangle extends Shape { readonly type = ShapeType.RoundTriangle; /** * The first point of the triangle. */ a: Vector; /** * The second point of the triangle. */ b: Vector; /** * The second point of the triangle. */ c: Vector; /** * The radius of the triangles's rounded edges and vertices. * In 3D, this is also equal to half the thickness of the round triangle. */ borderRadius: number; /** * Creates a new triangle shape with round corners. * * @param a - The first point of the triangle. * @param b - The second point of the triangle. * @param c - The third point of the triangle. * @param borderRadius - The radius of the borders of this triangle. In 3D, * this is also equal to half the thickness of the triangle. */ constructor(a: Vector, b: Vector, c: Vector, borderRadius: number) { super(); this.a = a; this.b = b; this.c = c; this.borderRadius = borderRadius; } public intoRaw(): RawShape { let ra = VectorOps.intoRaw(this.a); let rb = VectorOps.intoRaw(this.b); let rc = VectorOps.intoRaw(this.c); let result = RawShape.roundTriangle(ra, rb, rc, this.borderRadius); ra.free(); rb.free(); rc.free(); return result; } } /** * A shape that is a triangle mesh. */ export class Polyline extends Shape { readonly type = ShapeType.Polyline; /** * The vertices of the polyline. */ vertices: Float32Array; /** * The indices of the segments. */ indices: Uint32Array; /** * Creates a new polyline shape. * * @param vertices - The coordinates of the polyline's vertices. * @param indices - The indices of the polyline's segments. If this is `null` or not provided, then * the vertices are assumed to form a line strip. */ constructor(vertices: Float32Array, indices?: Uint32Array) { super(); this.vertices = vertices; this.indices = indices ?? new Uint32Array(0); } public intoRaw(): RawShape { return RawShape.polyline(this.vertices, this.indices); } } /** * A shape made of voxels. */ export class Voxels extends Shape { readonly type = ShapeType.Voxels; /** * The points or grid coordinates used to initialize the voxels. */ data: Float32Array | Int32Array; /** * The dimensions of each voxel. */ voxelSize: Vector; /** * Creates a new shape made of voxels. * * @param data - Defines the set of voxels. If this is a `Int32Array` then * each voxel is defined from its (signed) grid coordinates, * with 3 (resp 2) contiguous integers per voxel in 3D (resp 2D). * If this is a `Float32Array`, each voxel will be such that * they contain at least one point from this array (where each * point is defined from 3 (resp 2) contiguous numbers per point * in 3D (resp 2D). * @param voxelSize - The size of each voxel. */ constructor(data: Float32Array | Int32Array, voxelSize: Vector) { super(); this.data = data; this.voxelSize = voxelSize; } public intoRaw(): RawShape { let voxelSize = VectorOps.intoRaw(this.voxelSize); let result; if (this.data instanceof Int32Array) { result = RawShape.voxels(voxelSize, this.data); } else { result = RawShape.voxelsFromPoints(voxelSize, this.data); } voxelSize.free(); return result; } } /** * A shape that is a triangle mesh. */ export class TriMesh extends Shape { readonly type = ShapeType.TriMesh; /** * The vertices of the triangle mesh. */ vertices: Float32Array; /** * The indices of the triangles. */ indices: Uint32Array; /** * The triangle mesh flags. */ flags: TriMeshFlags; /** * Creates a new triangle mesh shape. * * @param vertices - The coordinates of the triangle mesh's vertices. * @param indices - The indices of the triangle mesh's triangles. */ constructor( vertices: Float32Array, indices: Uint32Array, flags?: TriMeshFlags, ) { super(); this.vertices = vertices; this.indices = indices; this.flags = flags; } public intoRaw(): RawShape { return RawShape.trimesh(this.vertices, this.indices, this.flags); } } // #if DIM3 /** * A shape that is a convex polygon. */ export class ConvexPolyhedron extends Shape { readonly type = ShapeType.ConvexPolyhedron; /** * The vertices of the convex polygon. */ vertices: Float32Array; /** * The indices of the convex polygon. */ indices?: Uint32Array | null; /** * Creates a new convex polygon shape. * * @param vertices - The coordinates of the convex polygon's vertices. * @param indices - The index buffer of this convex mesh. If this is `null` * or `undefined`, the convex-hull of the input vertices will be computed * automatically. Otherwise, it will be assumed that the mesh you provide * is already convex. */ constructor(vertices: Float32Array, indices?: Uint32Array | null) { super(); this.vertices = vertices; this.indices = indices; } public intoRaw(): RawShape { if (!!this.indices) { return RawShape.convexMesh(this.vertices, this.indices); } else { return RawShape.convexHull(this.vertices); } } } /** * A shape that is a convex polygon. */ export class RoundConvexPolyhedron extends Shape { readonly type = ShapeType.RoundConvexPolyhedron; /** * The vertices of the convex polygon. */ vertices: Float32Array; /** * The indices of the convex polygon. */ indices?: Uint32Array; /** * The radius of the convex polyhedron's rounded edges and vertices. */ borderRadius: number; /** * Creates a new convex polygon shape. * * @param vertices - The coordinates of the convex polygon's vertices. * @param indices - The index buffer of this convex mesh. If this is `null` * or `undefined`, the convex-hull of the input vertices will be computed * automatically. Otherwise, it will be assumed that the mesh you provide * is already convex. * @param borderRadius - The radius of the borders of this convex polyhedron. */ constructor( vertices: Float32Array, indices: Uint32Array | null | undefined, borderRadius: number, ) { super(); this.vertices = vertices; this.indices = indices; this.borderRadius = borderRadius; } public intoRaw(): RawShape { if (!!this.indices) { return RawShape.roundConvexMesh( this.vertices, this.indices, this.borderRadius, ); } else { return RawShape.roundConvexHull(this.vertices, this.borderRadius); } } } /** * A shape that is a heightfield. */ export class Heightfield extends Shape { readonly type = ShapeType.HeightField; /** * The number of rows in the heights matrix. */ nrows: number; /** * The number of columns in the heights matrix. */ ncols: number; /** * The heights of the heightfield along its local `y` axis, * provided as a matrix stored in column-major order. */ heights: Float32Array; /** * The dimensions of the heightfield's local `x,z` plane. */ scale: Vector; /** * Flags applied to the heightfield. */ flags: HeightFieldFlags; /** * Creates a new heightfield shape. * * @param nrows − The number of rows in the heights matrix. * @param ncols - The number of columns in the heights matrix. * @param heights - The heights of the heightfield along its local `y` axis, * provided as a matrix stored in column-major order. * @param scale - The dimensions of the heightfield's local `x,z` plane. */ constructor( nrows: number, ncols: number, heights: Float32Array, scale: Vector, flags?: HeightFieldFlags, ) { super(); this.nrows = nrows; this.ncols = ncols; this.heights = heights; this.scale = scale; this.flags = flags; } public intoRaw(): RawShape { let rawScale = VectorOps.intoRaw(this.scale); let rawShape = RawShape.heightfield( this.nrows, this.ncols, this.heights, rawScale, this.flags, ); rawScale.free(); return rawShape; } } /** * A shape that is a 3D cylinder. */ export class Cylinder extends Shape { readonly type = ShapeType.Cylinder; /** * The radius of the cylinder's basis. */ radius: number; /** * The cylinder's half height, along the `y` axis. */ halfHeight: number; /** * Creates a new cylinder with the given radius and half-height. * @param halfHeight - The balls half-height along the `y` axis. * @param radius - The balls radius. */ constructor(halfHeight: number, radius: number) { super(); this.halfHeight = halfHeight; this.radius = radius; } public intoRaw(): RawShape { return RawShape.cylinder(this.halfHeight, this.radius); } } /** * A shape that is a 3D cylinder with round corners. */ export class RoundCylinder extends Shape { readonly type = ShapeType.RoundCylinder; /** * The radius of the cylinder's basis. */ radius: number; /** * The cylinder's half height, along the `y` axis. */ halfHeight: number; /** * The radius of the cylinder's rounded edges and vertices. */ borderRadius: number; /** * Creates a new cylinder with the given radius and half-height. * @param halfHeight - The balls half-height along the `y` axis. * @param radius - The balls radius. * @param borderRadius - The radius of the borders of this cylinder. */ constructor(halfHeight: number, radius: number, borderRadius: number) { super(); this.borderRadius = borderRadius; this.halfHeight = halfHeight; this.radius = radius; } public intoRaw(): RawShape { return RawShape.roundCylinder( this.halfHeight, this.radius, this.borderRadius, ); } } /** * A shape that is a 3D cone. */ export class Cone extends Shape { readonly type = ShapeType.Cone; /** * The radius of the cone's basis. */ radius: number; /** * The cone's half height, along the `y` axis. */ halfHeight: number; /** * Creates a new cone with the given radius and half-height. * @param halfHeight - The balls half-height along the `y` axis. * @param radius - The balls radius. */ constructor(halfHeight: number, radius: number) { super(); this.halfHeight = halfHeight; this.radius = radius; } public intoRaw(): RawShape { return RawShape.cone(this.halfHeight, this.radius); } } /** * A shape that is a 3D cone with round corners. */ export class RoundCone extends Shape { readonly type = ShapeType.RoundCone; /** * The radius of the cone's basis. */ radius: number; /** * The cone's half height, along the `y` axis. */ halfHeight: number; /** * The radius of the cylinder's rounded edges and vertices. */ borderRadius: number; /** * Creates a new cone with the given radius and half-height. * @param halfHeight - The balls half-height along the `y` axis. * @param radius - The balls radius. * @param borderRadius - The radius of the borders of this cone. */ constructor(halfHeight: number, radius: number, borderRadius: number) { super(); this.halfHeight = halfHeight; this.radius = radius; this.borderRadius = borderRadius; } public intoRaw(): RawShape { return RawShape.roundCone( this.halfHeight, this.radius, this.borderRadius, ); } } // #endif