@devilsdev/rag-pipeline-utils
Version:
A modular toolkit for building RAG (Retrieval-Augmented Generation) pipelines in Node.js
77 lines (52 loc) • 1.76 kB
Markdown
id: Use-Cases
title: Real-World Use Cases
sidebar_position: 5
## Real-World Applications of RAG Pipeline Utils
This project goes beyond traditional RAG tools — it’s a **developer-focused modular framework**. Here's how it’s used:
### 1. Customizable LLM Workflows
**Use Case:** A team wants to test three different retrievers (Pinecone, Weaviate, Redis) and switch LLMs dynamically during eval.
```bash
rag-utils ingest sample.pdf --retriever pinecone --llm openai
```
### 2. Plugin-Based Evaluation Benchmarks
**Use Case:** You want to run BLEU/ROUGE scoring across prompt templates or documents using CLI:
```bash
rag-utils evaluate --dataset tests/eval.json --llm anthropic
```
### 3. Internal LLM System for SaaS
**Use Case:** Embed RAG processing into a backend:
```js
import { PluginRegistry, runPipeline } from 'rag-pipeline-utils';
const registry = new PluginRegistry();
registry.register('embedder', 'openai', new OpenAIEmbedder());
const output = await runPipeline({
loader: 'pdf',
retriever: 'pinecone',
llm: 'openai',
query: 'How does this work?'
});
```
### 4. GitHub + NPM Automation for ML Pipelines
**Use Case:** You want a release blog post + versioned package published automatically:
- Commit code
- Push to `main`
- GitHub Action triggers:
- Semantic release
- CHANGELOG update
- Blog post generation
- NPM publish
### Benefits
- **Pluggable** components via clean interfaces
- **CLI + programmatic** access for flexible DX
- **CI-validated** plugin contract enforcement
- **Docs-first** developer onboarding
- **Production-ready** for real ML teams
> Want to contribute your use case? PRs welcome on [GitHub](https://github.com/DevilsDev/rag-pipeline-utils).