UNPKG

@devilsdev/rag-pipeline-utils

Version:

A modular toolkit for building RAG (Retrieval-Augmented Generation) pipelines in Node.js

77 lines (52 loc) 1.76 kB
--- id: Use-Cases title: Real-World Use Cases sidebar_position: 5 --- ## Real-World Applications of RAG Pipeline Utils This project goes beyond traditional RAG tools it’s a **developer-focused modular framework**. Here's how it’s used: --- ### 1. Customizable LLM Workflows **Use Case:** A team wants to test three different retrievers (Pinecone, Weaviate, Redis) and switch LLMs dynamically during eval. ```bash rag-utils ingest sample.pdf --retriever pinecone --llm openai ``` --- ### 2. Plugin-Based Evaluation Benchmarks **Use Case:** You want to run BLEU/ROUGE scoring across prompt templates or documents using CLI: ```bash rag-utils evaluate --dataset tests/eval.json --llm anthropic ``` --- ### 3. Internal LLM System for SaaS **Use Case:** Embed RAG processing into a backend: ```js import { PluginRegistry, runPipeline } from 'rag-pipeline-utils'; const registry = new PluginRegistry(); registry.register('embedder', 'openai', new OpenAIEmbedder()); const output = await runPipeline({ loader: 'pdf', retriever: 'pinecone', llm: 'openai', query: 'How does this work?' }); ``` --- ### 4. GitHub + NPM Automation for ML Pipelines **Use Case:** You want a release blog post + versioned package published automatically: - Commit code - Push to `main` - GitHub Action triggers: - Semantic release - CHANGELOG update - Blog post generation - NPM publish --- ### Benefits - **Pluggable** components via clean interfaces - **CLI + programmatic** access for flexible DX - **CI-validated** plugin contract enforcement - **Docs-first** developer onboarding - **Production-ready** for real ML teams --- > Want to contribute your use case? PRs welcome on [GitHub](https://github.com/DevilsDev/rag-pipeline-utils).