UNPKG

@devilsdev/rag-pipeline-utils

Version:

A modular toolkit for building RAG (Retrieval-Augmented Generation) pipelines in Node.js

73 lines (48 loc) 1.31 kB
# Usage This guide covers how to use `@yourorg/rag-pipeline-utils` programmatically via API and through the CLI. --- ## Installation ```bash npm install @yourorg/rag-pipeline-utils ``` --- ## Programmatic API Import and instantiate a RAG pipeline: ```js import { createRagPipeline } from '@yourorg/rag-pipeline-utils'; const pipeline = createRagPipeline({ loader: 'markdown', embedder: 'openai', retriever: 'pinecone', llm: 'openai-gpt-4', useReranker: true }); const answer = await pipeline.query("What is retrieval-augmented generation?"); console.log(answer); ``` --- ## Pipeline Methods - `pipeline.ingest(path: string)` Load, chunk, embed, and store vectors - `pipeline.query(prompt: string)` Retrieve context, rerank (optional), and call LLM --- ## Plugin Configuration You can customize the pipeline by registering plugins: ```js registry.register('loader', 'custom', new MyCustomLoader()); registry.register('retriever', 'opensearch', new MyOpenSearchRetriever()); ``` --- ## Configuration via `.ragrc.json` Create a JSON file at your root: ```json { "loader": "directory", "embedder": "openai", "retriever": "pinecone", "llm": "openai-gpt-4", "useReranker": true } ``` Used automatically when no CLI args are passed. --- Next [CLI](./CLI.md)