@datalayer/core
Version:
**Datalayer Core**
137 lines (136 loc) • 2.75 kB
JSON
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": ["2"]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": ["1+1"]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"datalayer": {
"_about": "AI Platform for Data Analysis"
}
},
"outputs": [
{
"data": {
"text/plain": ["4"]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# I am a Python cell.\n",
"print('2+2')"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
},
"outputs": [
{
"data": {
"text/plain": []
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# import micropip\n",
"# await micropip.install('ipywidgets')\n",
"from ipywidgets import IntSlider\n",
"w = IntSlider()\n",
"w"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
},
"outputs": [
{
"data": {
"text/plain": []
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"w"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"datalayer": {
"sql": true
}
},
"outputs": [
{
"data": {
"text/plain": [""]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"-- I am a SQL cell.\n",
"SELECT * FROM LOGS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (ipykernel)",
"language": "python",
"name": "python"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}