UNPKG

@dagrejs/graphlib

Version:

A directed and undirected multi-graph library

1,397 lines (1,207 loc) 35.6 kB
(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.graphlib = f()}})(function(){var define,module,exports;return (function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i<t.length;i++)o(t[i]);return o}return r})()({1:[function(require,module,exports){ /** * Copyright (c) 2014, Chris Pettitt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ var lib = require("./lib"); module.exports = { Graph: lib.Graph, json: require("./lib/json"), alg: require("./lib/alg"), version: lib.version }; },{"./lib":17,"./lib/alg":8,"./lib/json":18}],2:[function(require,module,exports){ module.exports = components; function components(g) { var visited = {}; var cmpts = []; var cmpt; function dfs(v) { if (Object.hasOwn(visited, v)) return; visited[v] = true; cmpt.push(v); g.successors(v).forEach(dfs); g.predecessors(v).forEach(dfs); } g.nodes().forEach(function(v) { cmpt = []; dfs(v); if (cmpt.length) { cmpts.push(cmpt); } }); return cmpts; } },{}],3:[function(require,module,exports){ module.exports = dfs; /* * A helper that preforms a pre- or post-order traversal on the input graph * and returns the nodes in the order they were visited. If the graph is * undirected then this algorithm will navigate using neighbors. If the graph * is directed then this algorithm will navigate using successors. * * If the order is not "post", it will be treated as "pre". */ function dfs(g, vs, order) { if (!Array.isArray(vs)) { vs = [vs]; } var navigation = g.isDirected() ? v => g.successors(v) : v => g.neighbors(v); var orderFunc = order === "post" ? postOrderDfs : preOrderDfs; var acc = []; var visited = {}; vs.forEach(v => { if (!g.hasNode(v)) { throw new Error("Graph does not have node: " + v); } orderFunc(v, navigation, visited, acc); }); return acc; } function postOrderDfs(v, navigation, visited, acc) { var stack = [[v, false]]; while (stack.length > 0) { var curr = stack.pop(); if (curr[1]) { acc.push(curr[0]); } else { if (!Object.hasOwn(visited, curr[0])) { visited[curr[0]] = true; stack.push([curr[0], true]); forEachRight(navigation(curr[0]), w => stack.push([w, false])); } } } } function preOrderDfs(v, navigation, visited, acc) { var stack = [v]; while (stack.length > 0) { var curr = stack.pop(); if (!Object.hasOwn(visited, curr)) { visited[curr] = true; acc.push(curr); forEachRight(navigation(curr), w => stack.push(w)); } } } function forEachRight(array, iteratee) { var length = array.length; while (length--) { iteratee(array[length], length, array); } return array; } },{}],4:[function(require,module,exports){ var dijkstra = require("./dijkstra"); module.exports = dijkstraAll; function dijkstraAll(g, weightFunc, edgeFunc) { return g.nodes().reduce(function(acc, v) { acc[v] = dijkstra(g, v, weightFunc, edgeFunc); return acc; }, {}); } },{"./dijkstra":5}],5:[function(require,module,exports){ var PriorityQueue = require("../data/priority-queue"); module.exports = dijkstra; var DEFAULT_WEIGHT_FUNC = () => 1; function dijkstra(g, source, weightFn, edgeFn) { return runDijkstra(g, String(source), weightFn || DEFAULT_WEIGHT_FUNC, edgeFn || function(v) { return g.outEdges(v); }); } function runDijkstra(g, source, weightFn, edgeFn) { var results = {}; var pq = new PriorityQueue(); var v, vEntry; var updateNeighbors = function(edge) { var w = edge.v !== v ? edge.v : edge.w; var wEntry = results[w]; var weight = weightFn(edge); var distance = vEntry.distance + weight; if (weight < 0) { throw new Error("dijkstra does not allow negative edge weights. " + "Bad edge: " + edge + " Weight: " + weight); } if (distance < wEntry.distance) { wEntry.distance = distance; wEntry.predecessor = v; pq.decrease(w, distance); } }; g.nodes().forEach(function(v) { var distance = v === source ? 0 : Number.POSITIVE_INFINITY; results[v] = { distance: distance }; pq.add(v, distance); }); while (pq.size() > 0) { v = pq.removeMin(); vEntry = results[v]; if (vEntry.distance === Number.POSITIVE_INFINITY) { break; } edgeFn(v).forEach(updateNeighbors); } return results; } },{"../data/priority-queue":15}],6:[function(require,module,exports){ var tarjan = require("./tarjan"); module.exports = findCycles; function findCycles(g) { return tarjan(g).filter(function(cmpt) { return cmpt.length > 1 || (cmpt.length === 1 && g.hasEdge(cmpt[0], cmpt[0])); }); } },{"./tarjan":13}],7:[function(require,module,exports){ module.exports = floydWarshall; var DEFAULT_WEIGHT_FUNC = () => 1; function floydWarshall(g, weightFn, edgeFn) { return runFloydWarshall(g, weightFn || DEFAULT_WEIGHT_FUNC, edgeFn || function(v) { return g.outEdges(v); }); } function runFloydWarshall(g, weightFn, edgeFn) { var results = {}; var nodes = g.nodes(); nodes.forEach(function(v) { results[v] = {}; results[v][v] = { distance: 0 }; nodes.forEach(function(w) { if (v !== w) { results[v][w] = { distance: Number.POSITIVE_INFINITY }; } }); edgeFn(v).forEach(function(edge) { var w = edge.v === v ? edge.w : edge.v; var d = weightFn(edge); results[v][w] = { distance: d, predecessor: v }; }); }); nodes.forEach(function(k) { var rowK = results[k]; nodes.forEach(function(i) { var rowI = results[i]; nodes.forEach(function(j) { var ik = rowI[k]; var kj = rowK[j]; var ij = rowI[j]; var altDistance = ik.distance + kj.distance; if (altDistance < ij.distance) { ij.distance = altDistance; ij.predecessor = kj.predecessor; } }); }); }); return results; } },{}],8:[function(require,module,exports){ module.exports = { components: require("./components"), dijkstra: require("./dijkstra"), dijkstraAll: require("./dijkstra-all"), findCycles: require("./find-cycles"), floydWarshall: require("./floyd-warshall"), isAcyclic: require("./is-acyclic"), postorder: require("./postorder"), preorder: require("./preorder"), prim: require("./prim"), tarjan: require("./tarjan"), topsort: require("./topsort") }; },{"./components":2,"./dijkstra":5,"./dijkstra-all":4,"./find-cycles":6,"./floyd-warshall":7,"./is-acyclic":9,"./postorder":10,"./preorder":11,"./prim":12,"./tarjan":13,"./topsort":14}],9:[function(require,module,exports){ var topsort = require("./topsort"); module.exports = isAcyclic; function isAcyclic(g) { try { topsort(g); } catch (e) { if (e instanceof topsort.CycleException) { return false; } throw e; } return true; } },{"./topsort":14}],10:[function(require,module,exports){ var dfs = require("./dfs"); module.exports = postorder; function postorder(g, vs) { return dfs(g, vs, "post"); } },{"./dfs":3}],11:[function(require,module,exports){ var dfs = require("./dfs"); module.exports = preorder; function preorder(g, vs) { return dfs(g, vs, "pre"); } },{"./dfs":3}],12:[function(require,module,exports){ var Graph = require("../graph"); var PriorityQueue = require("../data/priority-queue"); module.exports = prim; function prim(g, weightFunc) { var result = new Graph(); var parents = {}; var pq = new PriorityQueue(); var v; function updateNeighbors(edge) { var w = edge.v === v ? edge.w : edge.v; var pri = pq.priority(w); if (pri !== undefined) { var edgeWeight = weightFunc(edge); if (edgeWeight < pri) { parents[w] = v; pq.decrease(w, edgeWeight); } } } if (g.nodeCount() === 0) { return result; } g.nodes().forEach(function(v) { pq.add(v, Number.POSITIVE_INFINITY); result.setNode(v); }); // Start from an arbitrary node pq.decrease(g.nodes()[0], 0); var init = false; while (pq.size() > 0) { v = pq.removeMin(); if (Object.hasOwn(parents, v)) { result.setEdge(v, parents[v]); } else if (init) { throw new Error("Input graph is not connected: " + g); } else { init = true; } g.nodeEdges(v).forEach(updateNeighbors); } return result; } },{"../data/priority-queue":15,"../graph":16}],13:[function(require,module,exports){ module.exports = tarjan; function tarjan(g) { var index = 0; var stack = []; var visited = {}; // node id -> { onStack, lowlink, index } var results = []; function dfs(v) { var entry = visited[v] = { onStack: true, lowlink: index, index: index++ }; stack.push(v); g.successors(v).forEach(function(w) { if (!Object.hasOwn(visited, w)) { dfs(w); entry.lowlink = Math.min(entry.lowlink, visited[w].lowlink); } else if (visited[w].onStack) { entry.lowlink = Math.min(entry.lowlink, visited[w].index); } }); if (entry.lowlink === entry.index) { var cmpt = []; var w; do { w = stack.pop(); visited[w].onStack = false; cmpt.push(w); } while (v !== w); results.push(cmpt); } } g.nodes().forEach(function(v) { if (!Object.hasOwn(visited, v)) { dfs(v); } }); return results; } },{}],14:[function(require,module,exports){ function topsort(g) { var visited = {}; var stack = {}; var results = []; function visit(node) { if (Object.hasOwn(stack, node)) { throw new CycleException(); } if (!Object.hasOwn(visited, node)) { stack[node] = true; visited[node] = true; g.predecessors(node).forEach(visit); delete stack[node]; results.push(node); } } g.sinks().forEach(visit); if (Object.keys(visited).length !== g.nodeCount()) { throw new CycleException(); } return results; } class CycleException extends Error { constructor() { super(...arguments); } } module.exports = topsort; topsort.CycleException = CycleException; },{}],15:[function(require,module,exports){ /** * A min-priority queue data structure. This algorithm is derived from Cormen, * et al., "Introduction to Algorithms". The basic idea of a min-priority * queue is that you can efficiently (in O(1) time) get the smallest key in * the queue. Adding and removing elements takes O(log n) time. A key can * have its priority decreased in O(log n) time. */ class PriorityQueue { _arr = []; _keyIndices = {}; /** * Returns the number of elements in the queue. Takes `O(1)` time. */ size() { return this._arr.length; } /** * Returns the keys that are in the queue. Takes `O(n)` time. */ keys() { return this._arr.map(function(x) { return x.key; }); } /** * Returns `true` if **key** is in the queue and `false` if not. */ has(key) { return Object.hasOwn(this._keyIndices, key); } /** * Returns the priority for **key**. If **key** is not present in the queue * then this function returns `undefined`. Takes `O(1)` time. * * @param {Object} key */ priority(key) { var index = this._keyIndices[key]; if (index !== undefined) { return this._arr[index].priority; } } /** * Returns the key for the minimum element in this queue. If the queue is * empty this function throws an Error. Takes `O(1)` time. */ min() { if (this.size() === 0) { throw new Error("Queue underflow"); } return this._arr[0].key; } /** * Inserts a new key into the priority queue. If the key already exists in * the queue this function returns `false`; otherwise it will return `true`. * Takes `O(n)` time. * * @param {Object} key the key to add * @param {Number} priority the initial priority for the key */ add(key, priority) { var keyIndices = this._keyIndices; key = String(key); if (!Object.hasOwn(keyIndices, key)) { var arr = this._arr; var index = arr.length; keyIndices[key] = index; arr.push({key: key, priority: priority}); this._decrease(index); return true; } return false; } /** * Removes and returns the smallest key in the queue. Takes `O(log n)` time. */ removeMin() { this._swap(0, this._arr.length - 1); var min = this._arr.pop(); delete this._keyIndices[min.key]; this._heapify(0); return min.key; } /** * Decreases the priority for **key** to **priority**. If the new priority is * greater than the previous priority, this function will throw an Error. * * @param {Object} key the key for which to raise priority * @param {Number} priority the new priority for the key */ decrease(key, priority) { var index = this._keyIndices[key]; if (priority > this._arr[index].priority) { throw new Error("New priority is greater than current priority. " + "Key: " + key + " Old: " + this._arr[index].priority + " New: " + priority); } this._arr[index].priority = priority; this._decrease(index); } _heapify(i) { var arr = this._arr; var l = 2 * i; var r = l + 1; var largest = i; if (l < arr.length) { largest = arr[l].priority < arr[largest].priority ? l : largest; if (r < arr.length) { largest = arr[r].priority < arr[largest].priority ? r : largest; } if (largest !== i) { this._swap(i, largest); this._heapify(largest); } } } _decrease(index) { var arr = this._arr; var priority = arr[index].priority; var parent; while (index !== 0) { parent = index >> 1; if (arr[parent].priority < priority) { break; } this._swap(index, parent); index = parent; } } _swap(i, j) { var arr = this._arr; var keyIndices = this._keyIndices; var origArrI = arr[i]; var origArrJ = arr[j]; arr[i] = origArrJ; arr[j] = origArrI; keyIndices[origArrJ.key] = i; keyIndices[origArrI.key] = j; } } module.exports = PriorityQueue; },{}],16:[function(require,module,exports){ "use strict"; var DEFAULT_EDGE_NAME = "\x00"; var GRAPH_NODE = "\x00"; var EDGE_KEY_DELIM = "\x01"; // Implementation notes: // // * Node id query functions should return string ids for the nodes // * Edge id query functions should return an "edgeObj", edge object, that is // composed of enough information to uniquely identify an edge: {v, w, name}. // * Internally we use an "edgeId", a stringified form of the edgeObj, to // reference edges. This is because we need a performant way to look these // edges up and, object properties, which have string keys, are the closest // we're going to get to a performant hashtable in JavaScript. class Graph { _isDirected = true; _isMultigraph = false; _isCompound = false; // Label for the graph itself _label; // Defaults to be set when creating a new node _defaultNodeLabelFn = () => undefined; // Defaults to be set when creating a new edge _defaultEdgeLabelFn = () => undefined; // v -> label _nodes = {}; // v -> edgeObj _in = {}; // u -> v -> Number _preds = {}; // v -> edgeObj _out = {}; // v -> w -> Number _sucs = {}; // e -> edgeObj _edgeObjs = {}; // e -> label _edgeLabels = {}; /* Number of nodes in the graph. Should only be changed by the implementation. */ _nodeCount = 0; /* Number of edges in the graph. Should only be changed by the implementation. */ _edgeCount = 0; _parent; _children; constructor(opts) { if (opts) { this._isDirected = Object.hasOwn(opts, "directed") ? opts.directed : true; this._isMultigraph = Object.hasOwn(opts, "multigraph") ? opts.multigraph : false; this._isCompound = Object.hasOwn(opts, "compound") ? opts.compound : false; } if (this._isCompound) { // v -> parent this._parent = {}; // v -> children this._children = {}; this._children[GRAPH_NODE] = {}; } } /* === Graph functions ========= */ /** * Whether graph was created with 'directed' flag set to true or not. */ isDirected() { return this._isDirected; } /** * Whether graph was created with 'multigraph' flag set to true or not. */ isMultigraph() { return this._isMultigraph; } /** * Whether graph was created with 'compound' flag set to true or not. */ isCompound() { return this._isCompound; } /** * Sets the label of the graph. */ setGraph(label) { this._label = label; return this; } /** * Gets the graph label. */ graph() { return this._label; } /* === Node functions ========== */ /** * Sets the default node label. If newDefault is a function, it will be * invoked ach time when setting a label for a node. Otherwise, this label * will be assigned as default label in case if no label was specified while * setting a node. * Complexity: O(1). */ setDefaultNodeLabel(newDefault) { this._defaultNodeLabelFn = newDefault; if (typeof newDefault !== 'function') { this._defaultNodeLabelFn = () => newDefault; } return this; } /** * Gets the number of nodes in the graph. * Complexity: O(1). */ nodeCount() { return this._nodeCount; } /** * Gets all nodes of the graph. Note, the in case of compound graph subnodes are * not included in list. * Complexity: O(1). */ nodes() { return Object.keys(this._nodes); } /** * Gets list of nodes without in-edges. * Complexity: O(|V|). */ sources() { var self = this; return this.nodes().filter(v => Object.keys(self._in[v]).length === 0); } /** * Gets list of nodes without out-edges. * Complexity: O(|V|). */ sinks() { var self = this; return this.nodes().filter(v => Object.keys(self._out[v]).length === 0); } /** * Invokes setNode method for each node in names list. * Complexity: O(|names|). */ setNodes(vs, value) { var args = arguments; var self = this; vs.forEach(function(v) { if (args.length > 1) { self.setNode(v, value); } else { self.setNode(v); } }); return this; } /** * Creates or updates the value for the node v in the graph. If label is supplied * it is set as the value for the node. If label is not supplied and the node was * created by this call then the default node label will be assigned. * Complexity: O(1). */ setNode(v, value) { if (Object.hasOwn(this._nodes, v)) { if (arguments.length > 1) { this._nodes[v] = value; } return this; } this._nodes[v] = arguments.length > 1 ? value : this._defaultNodeLabelFn(v); if (this._isCompound) { this._parent[v] = GRAPH_NODE; this._children[v] = {}; this._children[GRAPH_NODE][v] = true; } this._in[v] = {}; this._preds[v] = {}; this._out[v] = {}; this._sucs[v] = {}; ++this._nodeCount; return this; } /** * Gets the label of node with specified name. * Complexity: O(|V|). */ node(v) { return this._nodes[v]; } /** * Detects whether graph has a node with specified name or not. */ hasNode(v) { return Object.hasOwn(this._nodes, v); } /** * Remove the node with the name from the graph or do nothing if the node is not in * the graph. If the node was removed this function also removes any incident * edges. * Complexity: O(1). */ removeNode(v) { var self = this; if (Object.hasOwn(this._nodes, v)) { var removeEdge = e => self.removeEdge(self._edgeObjs[e]); delete this._nodes[v]; if (this._isCompound) { this._removeFromParentsChildList(v); delete this._parent[v]; this.children(v).forEach(function(child) { self.setParent(child); }); delete this._children[v]; } Object.keys(this._in[v]).forEach(removeEdge); delete this._in[v]; delete this._preds[v]; Object.keys(this._out[v]).forEach(removeEdge); delete this._out[v]; delete this._sucs[v]; --this._nodeCount; } return this; } /** * Sets node p as a parent for node v if it is defined, or removes the * parent for v if p is undefined. Method throws an exception in case of * invoking it in context of noncompound graph. * Average-case complexity: O(1). */ setParent(v, parent) { if (!this._isCompound) { throw new Error("Cannot set parent in a non-compound graph"); } if (parent === undefined) { parent = GRAPH_NODE; } else { // Coerce parent to string parent += ""; for (var ancestor = parent; ancestor !== undefined; ancestor = this.parent(ancestor)) { if (ancestor === v) { throw new Error("Setting " + parent+ " as parent of " + v + " would create a cycle"); } } this.setNode(parent); } this.setNode(v); this._removeFromParentsChildList(v); this._parent[v] = parent; this._children[parent][v] = true; return this; } _removeFromParentsChildList(v) { delete this._children[this._parent[v]][v]; } /** * Gets parent node for node v. * Complexity: O(1). */ parent(v) { if (this._isCompound) { var parent = this._parent[v]; if (parent !== GRAPH_NODE) { return parent; } } } /** * Gets list of direct children of node v. * Complexity: O(1). */ children(v = GRAPH_NODE) { if (this._isCompound) { var children = this._children[v]; if (children) { return Object.keys(children); } } else if (v === GRAPH_NODE) { return this.nodes(); } else if (this.hasNode(v)) { return []; } } /** * Return all nodes that are predecessors of the specified node or undefined if node v is not in * the graph. Behavior is undefined for undirected graphs - use neighbors instead. * Complexity: O(|V|). */ predecessors(v) { var predsV = this._preds[v]; if (predsV) { return Object.keys(predsV); } } /** * Return all nodes that are successors of the specified node or undefined if node v is not in * the graph. Behavior is undefined for undirected graphs - use neighbors instead. * Complexity: O(|V|). */ successors(v) { var sucsV = this._sucs[v]; if (sucsV) { return Object.keys(sucsV); } } /** * Return all nodes that are predecessors or successors of the specified node or undefined if * node v is not in the graph. * Complexity: O(|V|). */ neighbors(v) { var preds = this.predecessors(v); if (preds) { const union = new Set(preds); for (var succ of this.successors(v)) { union.add(succ); } return Array.from(union.values()); } } isLeaf(v) { var neighbors; if (this.isDirected()) { neighbors = this.successors(v); } else { neighbors = this.neighbors(v); } return neighbors.length === 0; } /** * Creates new graph with nodes filtered via filter. Edges incident to rejected node * are also removed. In case of compound graph, if parent is rejected by filter, * than all its children are rejected too. * Average-case complexity: O(|E|+|V|). */ filterNodes(filter) { var copy = new this.constructor({ directed: this._isDirected, multigraph: this._isMultigraph, compound: this._isCompound }); copy.setGraph(this.graph()); var self = this; Object.entries(this._nodes).forEach(function([v, value]) { if (filter(v)) { copy.setNode(v, value); } }); Object.values(this._edgeObjs).forEach(function(e) { if (copy.hasNode(e.v) && copy.hasNode(e.w)) { copy.setEdge(e, self.edge(e)); } }); var parents = {}; function findParent(v) { var parent = self.parent(v); if (parent === undefined || copy.hasNode(parent)) { parents[v] = parent; return parent; } else if (parent in parents) { return parents[parent]; } else { return findParent(parent); } } if (this._isCompound) { copy.nodes().forEach(v => copy.setParent(v, findParent(v))); } return copy; } /* === Edge functions ========== */ /** * Sets the default edge label or factory function. This label will be * assigned as default label in case if no label was specified while setting * an edge or this function will be invoked each time when setting an edge * with no label specified and returned value * will be used as a label for edge. * Complexity: O(1). */ setDefaultEdgeLabel(newDefault) { this._defaultEdgeLabelFn = newDefault; if (typeof newDefault !== 'function') { this._defaultEdgeLabelFn = () => newDefault; } return this; } /** * Gets the number of edges in the graph. * Complexity: O(1). */ edgeCount() { return this._edgeCount; } /** * Gets edges of the graph. In case of compound graph subgraphs are not considered. * Complexity: O(|E|). */ edges() { return Object.values(this._edgeObjs); } /** * Establish an edges path over the nodes in nodes list. If some edge is already * exists, it will update its label, otherwise it will create an edge between pair * of nodes with label provided or default label if no label provided. * Complexity: O(|nodes|). */ setPath(vs, value) { var self = this; var args = arguments; vs.reduce(function(v, w) { if (args.length > 1) { self.setEdge(v, w, value); } else { self.setEdge(v, w); } return w; }); return this; } /** * Creates or updates the label for the edge (v, w) with the optionally supplied * name. If label is supplied it is set as the value for the edge. If label is not * supplied and the edge was created by this call then the default edge label will * be assigned. The name parameter is only useful with multigraphs. */ setEdge() { var v, w, name, value; var valueSpecified = false; var arg0 = arguments[0]; if (typeof arg0 === "object" && arg0 !== null && "v" in arg0) { v = arg0.v; w = arg0.w; name = arg0.name; if (arguments.length === 2) { value = arguments[1]; valueSpecified = true; } } else { v = arg0; w = arguments[1]; name = arguments[3]; if (arguments.length > 2) { value = arguments[2]; valueSpecified = true; } } v = "" + v; w = "" + w; if (name !== undefined) { name = "" + name; } var e = edgeArgsToId(this._isDirected, v, w, name); if (Object.hasOwn(this._edgeLabels, e)) { if (valueSpecified) { this._edgeLabels[e] = value; } return this; } if (name !== undefined && !this._isMultigraph) { throw new Error("Cannot set a named edge when isMultigraph = false"); } // It didn't exist, so we need to create it. // First ensure the nodes exist. this.setNode(v); this.setNode(w); this._edgeLabels[e] = valueSpecified ? value : this._defaultEdgeLabelFn(v, w, name); var edgeObj = edgeArgsToObj(this._isDirected, v, w, name); // Ensure we add undirected edges in a consistent way. v = edgeObj.v; w = edgeObj.w; Object.freeze(edgeObj); this._edgeObjs[e] = edgeObj; incrementOrInitEntry(this._preds[w], v); incrementOrInitEntry(this._sucs[v], w); this._in[w][e] = edgeObj; this._out[v][e] = edgeObj; this._edgeCount++; return this; } /** * Gets the label for the specified edge. * Complexity: O(1). */ edge(v, w, name) { var e = (arguments.length === 1 ? edgeObjToId(this._isDirected, arguments[0]) : edgeArgsToId(this._isDirected, v, w, name)); return this._edgeLabels[e]; } /** * Gets the label for the specified edge and converts it to an object. * Complexity: O(1) */ edgeAsObj() { const edge = this.edge(...arguments); if (typeof edge !== "object") { return {label: edge}; } return edge; } /** * Detects whether the graph contains specified edge or not. No subgraphs are considered. * Complexity: O(1). */ hasEdge(v, w, name) { var e = (arguments.length === 1 ? edgeObjToId(this._isDirected, arguments[0]) : edgeArgsToId(this._isDirected, v, w, name)); return Object.hasOwn(this._edgeLabels, e); } /** * Removes the specified edge from the graph. No subgraphs are considered. * Complexity: O(1). */ removeEdge(v, w, name) { var e = (arguments.length === 1 ? edgeObjToId(this._isDirected, arguments[0]) : edgeArgsToId(this._isDirected, v, w, name)); var edge = this._edgeObjs[e]; if (edge) { v = edge.v; w = edge.w; delete this._edgeLabels[e]; delete this._edgeObjs[e]; decrementOrRemoveEntry(this._preds[w], v); decrementOrRemoveEntry(this._sucs[v], w); delete this._in[w][e]; delete this._out[v][e]; this._edgeCount--; } return this; } /** * Return all edges that point to the node v. Optionally filters those edges down to just those * coming from node u. Behavior is undefined for undirected graphs - use nodeEdges instead. * Complexity: O(|E|). */ inEdges(v, u) { var inV = this._in[v]; if (inV) { var edges = Object.values(inV); if (!u) { return edges; } return edges.filter(edge => edge.v === u); } } /** * Return all edges that are pointed at by node v. Optionally filters those edges down to just * those point to w. Behavior is undefined for undirected graphs - use nodeEdges instead. * Complexity: O(|E|). */ outEdges(v, w) { var outV = this._out[v]; if (outV) { var edges = Object.values(outV); if (!w) { return edges; } return edges.filter(edge => edge.w === w); } } /** * Returns all edges to or from node v regardless of direction. Optionally filters those edges * down to just those between nodes v and w regardless of direction. * Complexity: O(|E|). */ nodeEdges(v, w) { var inEdges = this.inEdges(v, w); if (inEdges) { return inEdges.concat(this.outEdges(v, w)); } } } function incrementOrInitEntry(map, k) { if (map[k]) { map[k]++; } else { map[k] = 1; } } function decrementOrRemoveEntry(map, k) { if (!--map[k]) { delete map[k]; } } function edgeArgsToId(isDirected, v_, w_, name) { var v = "" + v_; var w = "" + w_; if (!isDirected && v > w) { var tmp = v; v = w; w = tmp; } return v + EDGE_KEY_DELIM + w + EDGE_KEY_DELIM + (name === undefined ? DEFAULT_EDGE_NAME : name); } function edgeArgsToObj(isDirected, v_, w_, name) { var v = "" + v_; var w = "" + w_; if (!isDirected && v > w) { var tmp = v; v = w; w = tmp; } var edgeObj = { v: v, w: w }; if (name) { edgeObj.name = name; } return edgeObj; } function edgeObjToId(isDirected, edgeObj) { return edgeArgsToId(isDirected, edgeObj.v, edgeObj.w, edgeObj.name); } module.exports = Graph; },{}],17:[function(require,module,exports){ // Includes only the "core" of graphlib module.exports = { Graph: require("./graph"), version: require("./version") }; },{"./graph":16,"./version":19}],18:[function(require,module,exports){ var Graph = require("./graph"); module.exports = { write: write, read: read }; /** * Creates a JSON representation of the graph that can be serialized to a string with * JSON.stringify. The graph can later be restored using json.read. */ function write(g) { var json = { options: { directed: g.isDirected(), multigraph: g.isMultigraph(), compound: g.isCompound() }, nodes: writeNodes(g), edges: writeEdges(g) }; if (g.graph() !== undefined) { json.value = structuredClone(g.graph()); } return json; } function writeNodes(g) { return g.nodes().map(function(v) { var nodeValue = g.node(v); var parent = g.parent(v); var node = { v: v }; if (nodeValue !== undefined) { node.value = nodeValue; } if (parent !== undefined) { node.parent = parent; } return node; }); } function writeEdges(g) { return g.edges().map(function(e) { var edgeValue = g.edge(e); var edge = { v: e.v, w: e.w }; if (e.name !== undefined) { edge.name = e.name; } if (edgeValue !== undefined) { edge.value = edgeValue; } return edge; }); } /** * Takes JSON as input and returns the graph representation. * * @example * var g2 = graphlib.json.read(JSON.parse(str)); * g2.nodes(); * // ['a', 'b'] * g2.edges() * // [ { v: 'a', w: 'b' } ] */ function read(json) { var g = new Graph(json.options).setGraph(json.value); json.nodes.forEach(function(entry) { g.setNode(entry.v, entry.value); if (entry.parent) { g.setParent(entry.v, entry.parent); } }); json.edges.forEach(function(entry) { g.setEdge({ v: entry.v, w: entry.w, name: entry.name }, entry.value); }); return g; } },{"./graph":16}],19:[function(require,module,exports){ module.exports = '2.2.4'; },{}]},{},[1])(1) });