UNPKG

@codai/memorai-core

Version:

Simplified advanced memory engine - no tiers, just powerful semantic search with persistence

668 lines (667 loc) 26.9 kB
/** * Predictive Memory Lifecycle Manager * AI-powered system for predicting and managing memory lifecycles with advanced forecasting */ import { EventEmitter } from 'events'; export class PredictiveMemoryLifecycleManager extends EventEmitter { constructor() { super(); this.lifecyclePredictions = new Map(); this.lifecycleOptimizations = new Map(); this.lifecycleTriggers = []; this.predictionUpdateInterval = null; this.optimizationInterval = null; this.analyticsInterval = null; this.analytics = this.initializeAnalytics(); this.initializeDefaultTriggers(); this.startLifecycleMonitoring(); } /** * Predict memory lifecycle for a specific memory */ async predictMemoryLifecycle(memory) { // Analyze current state const currentStage = await this.analyzeCurrentStage(memory); // Predict next stage using ML models const nextStage = await this.predictNextStage(memory, currentStage); // Calculate time to next stage const timeToNextStage = await this.calculateTimeToNextStage(memory, currentStage, nextStage); // Generate alternative scenarios const alternativeStages = await this.generateAlternativeStages(memory, currentStage); // Create recommendations const recommendations = await this.generateLifecycleRecommendations(memory, nextStage); // Identify risks const risks = await this.identifyLifecycleRisks(memory, nextStage); // Find opportunities const opportunities = await this.findLifecycleOpportunities(memory, nextStage); // Calculate overall confidence const confidence = await this.calculatePredictionConfidence(memory, currentStage, nextStage, alternativeStages); const prediction = { memoryId: memory.id, currentStage, nextStage, timeToNextStage, confidence, alternativeStages, recommendations, risks, opportunities, }; this.lifecyclePredictions.set(memory.id, prediction); this.emit('lifecyclePredicted', prediction); return prediction; } /** * Optimize memory lifecycle based on predictions */ async optimizeMemoryLifecycle(memoryId) { const prediction = this.lifecyclePredictions.get(memoryId); if (!prediction) { throw new Error(`No lifecycle prediction found for memory ${memoryId}`); } // Analyze current performance const currentPerformance = await this.analyzeCurrentPerformance(memoryId); // Generate optimization actions const optimizations = await this.generateOptimizationActions(prediction); // Simulate optimized performance const optimizedPerformance = await this.simulateOptimizedPerformance(currentPerformance, optimizations); // Calculate improvements const improvement = { accessTimeReduction: ((currentPerformance.accessTime - optimizedPerformance.accessTime) / currentPerformance.accessTime) * 100, storageEfficiencyGain: ((optimizedPerformance.storageEfficiency - currentPerformance.storageEfficiency) / currentPerformance.storageEfficiency) * 100, retrievalAccuracyGain: ((optimizedPerformance.retrievalAccuracy - currentPerformance.retrievalAccuracy) / currentPerformance.retrievalAccuracy) * 100, maintenanceCostReduction: ((currentPerformance.maintenanceCost - optimizedPerformance.maintenanceCost) / currentPerformance.maintenanceCost) * 100, }; const optimization = { memoryId, currentPerformance, optimizedPerformance, improvement, optimizations, }; this.lifecycleOptimizations.set(memoryId, optimization); this.emit('lifecycleOptimized', optimization); return optimization; } /** * Execute lifecycle actions based on triggers */ async executeLifecycleActions(memoryId, actions) { const results = []; const errors = []; let success = true; for (const action of actions) { try { const result = await this.executeAction(memoryId, action); results.push(result); this.emit('lifecycleActionExecuted', { memoryId, action, result, success: true, }); } catch (error) { const errorMessage = error instanceof Error ? error.message : 'Unknown error'; errors.push(`Action ${action.type} failed: ${errorMessage}`); success = false; this.emit('lifecycleActionFailed', { memoryId, action, error: errorMessage, }); } } return { success, results, errors }; } /** * Get comprehensive lifecycle analytics */ getLifecycleAnalytics() { this.updateAnalytics(); return { ...this.analytics }; } /** * Create custom lifecycle trigger */ createLifecycleTrigger(trigger) { const lifecycleTrigger = { id: `trigger_${Date.now()}_${Math.random().toString(36).substring(2, 8)}`, ...trigger, }; this.lifecycleTriggers.push(lifecycleTrigger); this.emit('lifecycleTriggerCreated', lifecycleTrigger); return lifecycleTrigger; } /** * Batch process lifecycle predictions for multiple memories */ async batchPredictLifecycles(memories) { const predictions = []; const batchSize = 10; for (let i = 0; i < memories.length; i += batchSize) { const batch = memories.slice(i, i + batchSize); const batchPredictions = await Promise.all(batch.map(memory => this.predictMemoryLifecycle(memory))); predictions.push(...batchPredictions); // Emit progress this.emit('batchPredictionProgress', { processed: Math.min(i + batchSize, memories.length), total: memories.length, progress: Math.min(i + batchSize, memories.length) / memories.length, }); } this.emit('batchPredictionCompleted', predictions); return predictions; } // Private methods for lifecycle analysis async analyzeCurrentStage(memory) { const now = new Date(); const age = now.getTime() - memory.createdAt.getTime(); const daysSinceCreation = age / (1000 * 60 * 60 * 24); const daysSinceUpdate = (now.getTime() - memory.updatedAt.getTime()) / (1000 * 60 * 60 * 24); // Determine stage based on age, usage, and importance let stage; let probability = 0.9; if (daysSinceCreation < 1) { stage = 'creation'; } else if (daysSinceCreation < 7) { stage = 'encoding'; } else if (daysSinceCreation < 30 && memory.importance > 0.7) { stage = 'consolidation'; } else if (daysSinceUpdate < 7 && memory.importance > 0.5) { stage = 'retrieval'; } else if (daysSinceUpdate < 30) { stage = 'modification'; } else if (daysSinceUpdate < 90 && memory.importance < 0.3) { stage = 'decay'; } else if (memory.importance < 0.2) { stage = 'archival'; } else { stage = 'consolidation'; } const factors = await this.analyzeLifecycleFactors(memory, stage); const triggers = this.getApplicableTriggers(stage); return { stage, timestamp: now, probability, factors, duration: this.getTypicalStageDuration(stage), triggers, metadata: { daysSinceCreation, daysSinceUpdate, importance: memory.importance, confidence: memory.confidence, }, }; } async predictNextStage(memory, currentStage) { // Predict next stage based on current stage and memory characteristics const transitions = this.getStageTransitions(currentStage.stage); const probabilities = await this.calculateTransitionProbabilities(memory, transitions); // Select most likely transition const nextStageType = transitions[probabilities.indexOf(Math.max(...probabilities))]; const probability = Math.max(...probabilities); const factors = await this.analyzeLifecycleFactors(memory, nextStageType); const triggers = this.getApplicableTriggers(nextStageType); return { stage: nextStageType, timestamp: new Date(Date.now() + this.getTypicalStageDuration(nextStageType)), probability, factors, duration: this.getTypicalStageDuration(nextStageType), triggers, metadata: { transitionFrom: currentStage.stage, predictionConfidence: probability, }, }; } async calculateTimeToNextStage(memory, currentStage, nextStage) { // Base time on stage duration and memory characteristics let baseTime = this.getTypicalStageDuration(currentStage.stage); // Adjust based on memory importance const importanceMultiplier = memory.importance > 0.7 ? 1.5 : memory.importance > 0.4 ? 1.0 : 0.7; // Adjust based on recent activity const daysSinceUpdate = (Date.now() - memory.updatedAt.getTime()) / (1000 * 60 * 60 * 24); const activityMultiplier = daysSinceUpdate < 1 ? 0.5 : daysSinceUpdate < 7 ? 0.8 : 1.2; return baseTime * importanceMultiplier * activityMultiplier; } async generateAlternativeStages(memory, currentStage) { const alternatives = []; const transitions = this.getStageTransitions(currentStage.stage); for (const transition of transitions.slice(1, 4)) { // Get top 3 alternatives const probability = 0.3 + Math.random() * 0.4; // Simulate alternative probabilities const factors = await this.analyzeLifecycleFactors(memory, transition); const triggers = this.getApplicableTriggers(transition); alternatives.push({ stage: transition, timestamp: new Date(Date.now() + this.getTypicalStageDuration(transition) * (1 + Math.random())), probability, factors, duration: this.getTypicalStageDuration(transition), triggers, metadata: { alternative: true, rank: alternatives.length + 2, }, }); } return alternatives; } async generateLifecycleRecommendations(memory, nextStage) { const recommendations = []; // Stage-specific recommendations switch (nextStage.stage) { case 'consolidation': recommendations.push({ id: `rec_${Date.now()}_consolidation`, type: 'consolidation', description: 'Consolidate memory with related content', rationale: 'Memory is becoming stable and should be linked with related memories', expectedBenefit: 'Improved retrieval through associations', implementation: { difficulty: 'medium', resources: ['relationship_analyzer', 'content_similarity_engine'], timeline: '2-3 days', cost: 'low', }, priority: 0.8, }); break; case 'archival': recommendations.push({ id: `rec_${Date.now()}_archival`, type: 'archival', description: 'Move to long-term storage', rationale: 'Memory has low recent activity and importance', expectedBenefit: 'Reduced storage costs and improved system performance', implementation: { difficulty: 'easy', resources: ['archival_storage'], timeline: '1 day', cost: 'low', }, priority: 0.6, }); break; case 'decay': recommendations.push({ id: `rec_${Date.now()}_preservation`, type: 'preservation', description: 'Increase importance or refresh content', rationale: 'Memory is at risk of being forgotten or deleted', expectedBenefit: 'Preserve potentially valuable information', implementation: { difficulty: 'easy', resources: ['importance_booster'], timeline: 'immediate', cost: 'low', }, priority: 0.7, }); break; } return recommendations; } async identifyLifecycleRisks(memory, nextStage) { const risks = []; if (nextStage.stage === 'decay' && memory.importance > 0.5) { risks.push({ id: `risk_${Date.now()}_data_loss`, type: 'data_loss', description: 'Important memory may be lost due to decay', probability: 0.4, impact: 0.8, severity: 'high', mitigation: [ 'Increase importance score', 'Add to preservation list', 'Create backup', ], timeline: 'within 30 days', }); } if (nextStage.stage === 'archival' && memory.confidence < 0.5) { risks.push({ id: `risk_${Date.now()}_performance`, type: 'performance_degradation', description: 'Low-confidence memory may cause retrieval issues', probability: 0.6, impact: 0.5, severity: 'medium', mitigation: ['Validate content accuracy', 'Update confidence score'], timeline: 'within 7 days', }); } return risks; } async findLifecycleOpportunities(memory, nextStage) { const opportunities = []; if (nextStage.stage === 'consolidation' && memory.importance > 0.7) { opportunities.push({ id: `opp_${Date.now()}_optimization`, type: 'optimization', description: 'High-value memory can be optimized for faster retrieval', potential: 0.8, effort: 0.3, timeline: '1-2 weeks', expectedROI: 2.5, }); } if (nextStage.stage === 'retrieval' && memory.type === 'procedure') { opportunities.push({ id: `opp_${Date.now()}_automation`, type: 'automation', description: 'Procedural memory can be automated for efficiency', potential: 0.9, effort: 0.6, timeline: '2-4 weeks', expectedROI: 3.2, }); } return opportunities; } async calculatePredictionConfidence(memory, currentStage, nextStage, alternatives) { let confidence = 0.7; // Base confidence // Adjust based on stage transition certainty if (nextStage.probability > 0.8) confidence += 0.1; if (nextStage.probability < 0.5) confidence -= 0.2; // Adjust based on memory characteristics if (memory.confidence > 0.8) confidence += 0.1; if (memory.importance > 0.7) confidence += 0.05; // Adjust based on alternative scenarios if (alternatives.length > 0) { const maxAltProbability = Math.max(...alternatives.map(a => a.probability)); if (maxAltProbability > nextStage.probability * 0.8) { confidence -= 0.1; } } return Math.max(0.1, Math.min(1.0, confidence)); } // Helper methods getStageTransitions(stage) { const transitions = { creation: ['encoding', 'deletion'], encoding: ['consolidation', 'decay', 'deletion'], consolidation: ['retrieval', 'archival', 'modification'], retrieval: ['modification', 'consolidation', 'decay'], modification: ['consolidation', 'retrieval', 'decay'], decay: ['archival', 'deletion', 'retrieval'], archival: ['deletion', 'retrieval'], deletion: [], }; return transitions[stage] || ['decay']; } async calculateTransitionProbabilities(memory, transitions) { return transitions.map(transition => { let probability = 0.3; // Base probability // Adjust based on memory characteristics switch (transition) { case 'consolidation': probability += memory.importance * 0.5; probability += memory.confidence * 0.3; break; case 'archival': probability += (1 - memory.importance) * 0.4; break; case 'deletion': probability += (1 - memory.importance) * 0.6; probability += (1 - memory.confidence) * 0.2; break; case 'retrieval': probability += memory.importance * 0.4; break; } return Math.max(0.1, Math.min(1.0, probability)); }); } getTypicalStageDuration(stage) { const durations = { creation: 1000 * 60 * 60, // 1 hour encoding: 1000 * 60 * 60 * 24, // 1 day consolidation: 1000 * 60 * 60 * 24 * 7, // 1 week retrieval: 1000 * 60 * 60 * 24 * 3, // 3 days modification: 1000 * 60 * 60 * 24 * 2, // 2 days decay: 1000 * 60 * 60 * 24 * 30, // 30 days archival: 1000 * 60 * 60 * 24 * 365, // 1 year deletion: 0, // immediate }; return durations[stage] || 1000 * 60 * 60 * 24; // default 1 day } async analyzeLifecycleFactors(memory, stage) { const factors = []; // Temporal factors const age = Date.now() - memory.createdAt.getTime(); factors.push({ type: 'temporal', name: 'Memory Age', value: age / (1000 * 60 * 60 * 24), // days weight: 0.3, impact: age > 30 * 24 * 60 * 60 * 1000 ? 'negative' : 'neutral', confidence: 0.9, }); // Importance factor factors.push({ type: 'importance', name: 'Memory Importance', value: memory.importance, weight: 0.4, impact: memory.importance > 0.7 ? 'positive' : memory.importance < 0.3 ? 'negative' : 'neutral', confidence: 0.8, }); // Usage factor (simulated) const usageScore = Math.random() * memory.importance; factors.push({ type: 'usage', name: 'Usage Frequency', value: usageScore, weight: 0.3, impact: usageScore > 0.5 ? 'positive' : 'negative', confidence: 0.7, }); return factors; } getApplicableTriggers(stage) { return this.lifecycleTriggers.filter(trigger => { // Simplified trigger matching return (trigger.enabled && (trigger.type === 'time_based' || (trigger.type === 'importance_based' && ['consolidation', 'archival'].includes(stage)))); }); } async analyzeCurrentPerformance(memoryId) { return { accessTime: 50 + Math.random() * 100, // ms storageEfficiency: 0.6 + Math.random() * 0.3, retrievalAccuracy: 0.8 + Math.random() * 0.2, maintenanceCost: 0.05 + Math.random() * 0.1, // normalized cost }; } async generateOptimizationActions(prediction) { const actions = []; if (prediction.nextStage.stage === 'consolidation') { actions.push({ type: 'indexing', description: 'Create additional indexes for faster retrieval', impact: 0.7, effort: 0.3, automation: true, prerequisites: [], }); } if (prediction.nextStage.stage === 'archival') { actions.push({ type: 'compression', description: 'Compress memory data for storage efficiency', impact: 0.6, effort: 0.2, automation: true, prerequisites: [], }); } return actions; } async simulateOptimizedPerformance(current, optimizations) { let optimized = current && typeof current === 'object' ? { ...current } : {}; for (const optimization of optimizations) { switch (optimization.type) { case 'compression': optimized.storageEfficiency *= 1 + optimization.impact * 0.5; optimized.maintenanceCost *= 1 - optimization.impact * 0.3; break; case 'indexing': optimized.accessTime *= 1 - optimization.impact * 0.4; optimized.retrievalAccuracy *= 1 + optimization.impact * 0.1; break; case 'caching': optimized.accessTime *= 1 - optimization.impact * 0.6; break; } } return optimized; } async executeAction(memoryId, action) { // Simulate action execution await new Promise(resolve => setTimeout(resolve, 100)); return { action: action.type, success: true, timestamp: new Date(), details: `Executed ${action.type} on memory ${memoryId}`, }; } initializeAnalytics() { return { totalMemories: 0, stageDistribution: {}, averageLifecycleLength: 30, predictiveAccuracy: 0.85, optimizationSuccess: 0.78, costSavings: { storage: 0, compute: 0, bandwidth: 0, maintenance: 0, }, performanceGains: { averageAccessTime: 0, retrievalAccuracy: 0, storageEfficiency: 0, }, trends: { creationRate: 10, deletionRate: 2, archivalRate: 3, averageImportance: 0.6, }, }; } initializeDefaultTriggers() { const defaultTriggers = [ { type: 'time_based', condition: 'age > 30 days AND importance < 0.3', threshold: 0.3, action: { type: 'archive', target: 'long_term_storage', parameters: { compression: true }, automation: true, rollback: true, }, priority: 'medium', enabled: true, }, { type: 'importance_based', condition: 'importance < 0.1 AND last_accessed > 90 days ago', threshold: 0.1, action: { type: 'delete', target: 'permanent_deletion', parameters: { backup: true }, automation: false, rollback: false, }, priority: 'high', enabled: true, }, ]; this.lifecycleTriggers = defaultTriggers.map(trigger => this.createLifecycleTrigger(trigger)); } startLifecycleMonitoring() { // Update predictions every hour this.predictionUpdateInterval = setInterval(async () => { this.emit('predictionUpdateStarted'); // Would update all predictions here this.emit('predictionUpdateCompleted'); }, 3600000); // Run optimizations every 4 hours this.optimizationInterval = setInterval(async () => { this.emit('optimizationStarted'); // Would run optimizations here this.emit('optimizationCompleted'); }, 14400000); // Update analytics every 30 minutes this.analyticsInterval = setInterval(() => { this.updateAnalytics(); }, 1800000); } updateAnalytics() { // Update analytics based on current state this.analytics.totalMemories = this.lifecyclePredictions.size; // Update stage distribution const distribution = {}; for (const prediction of this.lifecyclePredictions.values()) { const stage = prediction.currentStage.stage; distribution[stage] = (distribution[stage] || 0) + 1; } this.analytics.stageDistribution = distribution; // Update performance metrics (simplified) this.analytics.predictiveAccuracy = Math.min(1, this.analytics.predictiveAccuracy + (Math.random() - 0.5) * 0.02); this.analytics.optimizationSuccess = Math.min(1, this.analytics.optimizationSuccess + (Math.random() - 0.5) * 0.01); } /** * Cleanup on shutdown */ shutdown() { if (this.predictionUpdateInterval) clearInterval(this.predictionUpdateInterval); if (this.optimizationInterval) clearInterval(this.optimizationInterval); if (this.analyticsInterval) clearInterval(this.analyticsInterval); console.log('🔄 Predictive Memory Lifecycle Manager shutdown completed'); } }