UNPKG

@codai/cbd

Version:

Codai Better Database - High-Performance Vector Memory System with HPKV-inspired architecture and MCP server

496 lines 21.4 kB
/** * CBD Phase 4: Future Technologies Integration * * Next-generation database features including quantum computing, * digital twins, blockchain, and mixed reality capabilities. * * Features: * - Quantum computing integration for optimization * - IoT and real-world modeling with digital twins * - Immutable audit trail with blockchain * - Mixed reality data visualization interfaces * * @version 4.0.0 * @since Phase 4: Innovation & Scale */ import { EventEmitter } from 'events'; /** * Future Technologies Integration Service * * Manages quantum computing, digital twins, blockchain, * and mixed reality capabilities for next-generation database features. */ export class FutureTechnologies extends EventEmitter { quantumProcessors = new Map(); digitalTwins = new Map(); blockchainNetworks = new Map(); mixedRealitySessions = new Map(); constructor() { super(); this.initializeFutureTechnologies(); } /** * Initialize quantum computing processor for database optimization */ async initializeQuantumProcessor(config) { const startTime = Date.now(); try { // Validate quantum configuration await this.validateQuantumConfiguration(config); // Initialize quantum processor const processorId = `quantum_${config.provider}_${Date.now()}`; // Connect to quantum backend const connection = await this.connectToQuantumBackend(config); // Register processor this.quantumProcessors.set(processorId, config); // Emit success event this.emit('quantum_processor_initialized', { processorId, provider: config.provider, backend: config.quantumBackend, maxQubits: config.maxQubits, initializationTime: Date.now() - startTime }); return processorId; } catch (error) { this.emit('quantum_initialization_failed', { provider: config.provider, error: error instanceof Error ? error.message : 'Unknown error', duration: Date.now() - startTime }); throw new Error(`Quantum processor initialization failed: ${error instanceof Error ? error.message : 'Unknown error'}`); } } /** * Perform quantum-enhanced database optimization */ async performQuantumOptimization(processorId, optimizationProblem, parameters) { const startTime = Date.now(); try { const config = this.quantumProcessors.get(processorId); if (!config) { throw new Error(`Quantum processor not found: ${processorId}`); } // Classical preprocessing const classicalStart = Date.now(); const preprocessedProblem = await this.preprocessOptimizationProblem(optimizationProblem, parameters); const classicalTime = Date.now() - classicalStart; // Quantum processing const quantumStart = Date.now(); const quantumResult = await this.executeQuantumOptimization(config, preprocessedProblem); const quantumTime = Date.now() - quantumStart; // Calculate results const result = { optimizationType: optimizationProblem, classicalTime, quantumTime, speedupFactor: classicalTime > 0 ? classicalTime / quantumTime : 1, confidenceLevel: quantumResult.confidence, qubitsUsed: quantumResult.qubitsUsed, energyEfficiency: quantumResult.energyRatio }; // Emit success event this.emit('quantum_optimization_completed', { processorId, optimizationType: optimizationProblem, speedup: result.speedupFactor, qubitsUsed: result.qubitsUsed, totalTime: Date.now() - startTime }); return result; } catch (error) { this.emit('quantum_optimization_failed', { processorId, optimizationType: optimizationProblem, error: error instanceof Error ? error.message : 'Unknown error', duration: Date.now() - startTime }); throw new Error(`Quantum optimization failed: ${error instanceof Error ? error.message : 'Unknown error'}`); } } /** * Create and manage digital twin for IoT and real-world modeling */ async createDigitalTwin(config) { const startTime = Date.now(); try { // Validate digital twin configuration await this.validateDigitalTwinConfiguration(config); // Initialize digital twin const twinId = config.twinId || `twin_${Date.now()}`; // Set up sensor connections await this.connectSensors(config.sensors); // Start real-time processing if enabled if (config.realTimeProcessing) { await this.startRealTimeProcessing(twinId, config); } // Register digital twin this.digitalTwins.set(twinId, { ...config, twinId }); // Emit success event this.emit('digital_twin_created', { twinId, modelType: config.modelType, sensorsCount: config.sensors.length, realTimeProcessing: config.realTimeProcessing, creationTime: Date.now() - startTime }); return twinId; } catch (error) { this.emit('digital_twin_creation_failed', { twinId: config.twinId, modelType: config.modelType, error: error instanceof Error ? error.message : 'Unknown error', duration: Date.now() - startTime }); throw new Error(`Digital twin creation failed: ${error instanceof Error ? error.message : 'Unknown error'}`); } } /** * Get digital twin insights and predictions */ async getDigitalTwinInsights(twinId) { try { const config = this.digitalTwins.get(twinId); if (!config) { throw new Error(`Digital twin not found: ${twinId}`); } // Collect sensor data const sensorData = await this.collectSensorData(config.sensors); // Detect anomalies const anomalies = await this.detectAnomalies(sensorData, config.alertThresholds); // Generate predictions const predictions = config.predictiveAnalytics ? await this.generatePredictions(twinId, sensorData) : {}; // Calculate risk score const riskScore = this.calculateRiskScore(sensorData, anomalies, config.alertThresholds); // Generate recommendations const recommendations = await this.generateRecommendations(twinId, sensorData, anomalies); const insight = { twinId, timestamp: new Date(), sensorData, anomalies, predictions, recommendations, riskScore }; // Emit insight event this.emit('digital_twin_insight', { twinId, anomaliesCount: anomalies.length, riskScore, predictionsCount: Object.keys(predictions).length }); return insight; } catch (error) { this.emit('digital_twin_insight_failed', { twinId, error: error instanceof Error ? error.message : 'Unknown error' }); throw new Error(`Digital twin insights failed: ${error instanceof Error ? error.message : 'Unknown error'}`); } } /** * Initialize blockchain network for immutable audit trails */ async initializeBlockchain(config) { const startTime = Date.now(); try { // Validate blockchain configuration await this.validateBlockchainConfiguration(config); // Connect to blockchain network const networkId = `blockchain_${config.network}_${Date.now()}`; // Deploy smart contracts if needed if (config.smartContracts) { await this.deployAuditContracts(config); } // Register blockchain network this.blockchainNetworks.set(networkId, config); // Emit success event this.emit('blockchain_initialized', { networkId, network: config.network, auditScope: config.auditScope.length, smartContracts: config.smartContracts, initializationTime: Date.now() - startTime }); return networkId; } catch (error) { this.emit('blockchain_initialization_failed', { network: config.network, error: error instanceof Error ? error.message : 'Unknown error', duration: Date.now() - startTime }); throw new Error(`Blockchain initialization failed: ${error instanceof Error ? error.message : 'Unknown error'}`); } } /** * Create blockchain audit record */ async createAuditRecord(networkId, operation, data) { try { const config = this.blockchainNetworks.get(networkId); if (!config) { throw new Error(`Blockchain network not found: ${networkId}`); } // Create data hash const dataHash = await this.createDataHash(data); // Get previous hash const previousHash = await this.getPreviousHash(networkId); // Create blockchain transaction const transaction = await this.createBlockchainTransaction(config, { operation, dataHash, previousHash, timestamp: new Date() }); const auditRecord = { transactionHash: transaction.hash, blockNumber: transaction.blockNumber, timestamp: transaction.timestamp, operation, dataHash, previousHash, verified: transaction.verified, gasUsed: transaction.gasUsed }; // Emit audit event this.emit('blockchain_audit_created', { networkId, operation, transactionHash: transaction.hash, blockNumber: transaction.blockNumber }); return auditRecord; } catch (error) { this.emit('blockchain_audit_failed', { networkId, operation, error: error instanceof Error ? error.message : 'Unknown error' }); throw new Error(`Blockchain audit record creation failed: ${error instanceof Error ? error.message : 'Unknown error'}`); } } /** * Initialize mixed reality visualization session */ async initializeMixedReality(config) { const startTime = Date.now(); try { // Validate mixed reality configuration await this.validateMixedRealityConfiguration(config); // Initialize MR session const sessionId = `mr_session_${Date.now()}`; // Connect to MR platform await this.connectToMRPlatform(config); // Load data models for visualization await this.loadDataModelsForMR(config); // Register MR session this.mixedRealitySessions.set(sessionId, config); // Emit success event this.emit('mixed_reality_initialized', { sessionId, platform: config.platform, visualizationType: config.visualizationType, collaborativeMode: config.collaborativeMode, initializationTime: Date.now() - startTime }); return sessionId; } catch (error) { this.emit('mixed_reality_initialization_failed', { platform: config.platform, error: error instanceof Error ? error.message : 'Unknown error', duration: Date.now() - startTime }); throw new Error(`Mixed reality initialization failed: ${error instanceof Error ? error.message : 'Unknown error'}`); } } /** * Get comprehensive future technologies analytics */ async getFutureTechnologiesAnalytics() { return { quantum: { processors: this.quantumProcessors.size, azureQuantum: Array.from(this.quantumProcessors.values()).filter(q => q.provider === 'azure_quantum').length, awsBraket: Array.from(this.quantumProcessors.values()).filter(q => q.provider === 'aws_braket').length, ibmQuantum: Array.from(this.quantumProcessors.values()).filter(q => q.provider === 'ibm_quantum').length, googleQuantumAI: Array.from(this.quantumProcessors.values()).filter(q => q.provider === 'google_quantum_ai').length }, digitalTwins: { total: this.digitalTwins.size, realTimeProcessing: Array.from(this.digitalTwins.values()).filter(dt => dt.realTimeProcessing).length, predictiveAnalytics: Array.from(this.digitalTwins.values()).filter(dt => dt.predictiveAnalytics).length, building: Array.from(this.digitalTwins.values()).filter(dt => dt.modelType === 'building').length, factory: Array.from(this.digitalTwins.values()).filter(dt => dt.modelType === 'factory').length, city: Array.from(this.digitalTwins.values()).filter(dt => dt.modelType === 'city').length }, blockchain: { networks: this.blockchainNetworks.size, ethereum: Array.from(this.blockchainNetworks.values()).filter(bc => bc.network === 'ethereum').length, polygon: Array.from(this.blockchainNetworks.values()).filter(bc => bc.network === 'polygon').length, smartContracts: Array.from(this.blockchainNetworks.values()).filter(bc => bc.smartContracts).length, immutableStorage: Array.from(this.blockchainNetworks.values()).filter(bc => bc.immutableStorage).length }, mixedReality: { sessions: this.mixedRealitySessions.size, hololens: Array.from(this.mixedRealitySessions.values()).filter(mr => mr.platform === 'hololens').length, collaborative: Array.from(this.mixedRealitySessions.values()).filter(mr => mr.collaborativeMode).length, dataModels3D: Array.from(this.mixedRealitySessions.values()).filter(mr => mr.visualizationType === '3d_data_models').length, realTimeAnalytics: Array.from(this.mixedRealitySessions.values()).filter(mr => mr.visualizationType === 'real_time_analytics').length }, totalImplementations: this.quantumProcessors.size + this.digitalTwins.size + this.blockchainNetworks.size + this.mixedRealitySessions.size }; } // Private implementation methods initializeFutureTechnologies() { console.log('🚀 Initializing Future Technologies: Quantum, Digital Twins, Blockchain, Mixed Reality'); } async validateQuantumConfiguration(config) { if (config.maxQubits < 1 || config.maxQubits > 1000) { throw new Error('Invalid qubit configuration: must be between 1 and 1000'); } } async connectToQuantumBackend(config) { // Simulate quantum backend connection return { connected: true, backend: config.quantumBackend }; } async preprocessOptimizationProblem(problem, parameters) { // Classical preprocessing logic return { problem, parameters, preprocessed: true }; } async executeQuantumOptimization(config, problem) { // Simulate quantum optimization return { confidence: 0.95, qubitsUsed: Math.min(32, config.maxQubits), energyRatio: 0.85, result: 'optimized' }; } async validateDigitalTwinConfiguration(config) { if (config.sensors.length === 0) { throw new Error('Digital twin must have at least one sensor'); } } async connectSensors(sensors) { // Simulate sensor connections console.log(`Connected to ${sensors.length} sensors: ${sensors.join(', ')}`); } async startRealTimeProcessing(twinId, config) { // Start real-time processing console.log(`Started real-time processing for digital twin: ${twinId}`); } async collectSensorData(sensors) { // Simulate sensor data collection const data = {}; sensors.forEach((sensor, index) => { data[sensor] = Math.random() * 100 + index * 10; }); return data; } async detectAnomalies(sensorData, thresholds) { const anomalies = []; Object.entries(sensorData).forEach(([sensor, value]) => { const threshold = thresholds[sensor]; if (threshold && value > threshold) { anomalies.push(`${sensor} exceeded threshold: ${value} > ${threshold}`); } }); return anomalies; } async generatePredictions(twinId, sensorData) { // Simulate predictions const predictions = {}; Object.entries(sensorData).forEach(([sensor, value]) => { predictions[`${sensor}_prediction`] = value * 1.1 + Math.random() * 5; }); return predictions; } calculateRiskScore(sensorData, anomalies, thresholds) { let riskScore = 0; // Base risk from anomalies riskScore += anomalies.length * 20; // Additional risk from sensor values approaching thresholds Object.entries(sensorData).forEach(([sensor, value]) => { const threshold = thresholds[sensor]; if (threshold) { const proximityRisk = (value / threshold) * 10; riskScore += Math.min(proximityRisk, 25); } }); return Math.min(riskScore, 100); } async generateRecommendations(twinId, sensorData, anomalies) { const recommendations = []; if (anomalies.length > 0) { recommendations.push('Investigate anomalous sensor readings immediately'); recommendations.push('Consider implementing additional monitoring'); } // Add sensor-specific recommendations Object.entries(sensorData).forEach(([sensor, value]) => { if (value > 80) { recommendations.push(`Consider maintenance for ${sensor} (high reading: ${value.toFixed(2)})`); } }); return recommendations; } async validateBlockchainConfiguration(config) { if (config.auditScope.length === 0) { throw new Error('Blockchain configuration must specify at least one audit scope'); } } async deployAuditContracts(config) { // Simulate smart contract deployment console.log(`Deploying audit smart contracts on ${config.network}`); } async createDataHash(data) { // Create hash of data (simplified) const dataString = JSON.stringify(data); let hash = 0; for (let i = 0; i < dataString.length; i++) { const char = dataString.charCodeAt(i); hash = ((hash << 5) - hash) + char; hash = hash & hash; // Convert to 32-bit integer } return `0x${Math.abs(hash).toString(16)}`; } async getPreviousHash(networkId) { // Get previous transaction hash (simplified) return `0x${Date.now().toString(16)}`; } async createBlockchainTransaction(config, data) { // Simulate blockchain transaction return { hash: `0x${Date.now().toString(16)}${Math.random().toString(16).substr(2, 8)}`, blockNumber: Math.floor(Date.now() / 1000) % 1000000, timestamp: new Date(), verified: true, gasUsed: config.network === 'ethereum' ? Math.floor(Math.random() * 50000) + 21000 : undefined }; } async validateMixedRealityConfiguration(config) { const supportedPlatforms = ['hololens', 'magic_leap', 'meta_quest', 'apple_vision']; if (!supportedPlatforms.includes(config.platform)) { throw new Error(`Unsupported MR platform: ${config.platform}`); } } async connectToMRPlatform(config) { // Simulate MR platform connection console.log(`Connected to MR platform: ${config.platform}`); } async loadDataModelsForMR(config) { // Simulate loading data models for visualization console.log(`Loading data models for ${config.visualizationType} visualization`); } } export default FutureTechnologies; //# sourceMappingURL=FutureTechnologies.js.map