UNPKG

@codai/cbd

Version:

Codai Better Database - High-Performance Vector Memory System with HPKV-inspired architecture and MCP server

399 lines 14.5 kB
/** * Machine Learning Integration * Custom embedding models, model inference, auto-ML, and predictive analytics */ import { EventEmitter } from 'events'; import { OpenAI } from 'openai'; class MachineLearningIntegration extends EventEmitter { openai; modelRegistry; inferencePipelines; modelCache; predictiveEngine; autoMLEngine; performanceTracker; constructor(config) { super(); this.openai = new OpenAI({ apiKey: config.openaiApiKey }); this.modelRegistry = new Map(); this.inferencePipelines = new Map(); this.modelCache = new Map(); this.performanceTracker = new Map(); this.predictiveEngine = new PredictiveAnalyticsEngine(config.predictiveAnalytics || { patternRecognition: true, anomalyDetection: true, trendForecasting: true, userBehaviorPrediction: true, performanceOptimization: true }); this.autoMLEngine = new AutoMLEngine(config.autoML || { enabled: true, featureEngineering: true, hyperparameterTuning: true, modelSelection: true, ensembleMethods: true }); this.initializeMLIntegration(config.modelConfigs || []); } initializeMLIntegration(modelConfigs) { // Register initial models modelConfigs.forEach(config => { this.registerModel(`default_${config.modelType}`, config); }); // Initialize predictive analytics this.predictiveEngine.initialize(); // Start AutoML processes this.autoMLEngine.initialize(); // Setup performance monitoring this.setupPerformanceMonitoring(); } /** * Custom Embedding Model Support */ async generateCustomEmbedding(text, modelId = 'default_embedding', options = {}) { const startTime = Date.now(); try { const model = this.modelRegistry.get(modelId); if (!model) { throw new Error(`Model ${modelId} not found`); } // Check cache first const cacheKey = `${modelId}_${text}_${JSON.stringify(options)}`; if (this.modelCache.has(cacheKey)) { const cached = this.modelCache.get(cacheKey); this.emit('embeddingCacheHit', { modelId, text: text.substring(0, 50) }); return { ...cached, processingTime: Date.now() - startTime }; } let embedding; let confidence = 1.0; // Generate embedding based on model type if (model.apiEndpoint) { // Custom API endpoint embedding = await this.generateCustomAPIEmbedding(text, model, options); } else { // OpenAI embedding const response = await this.openai.embeddings.create({ model: 'text-embedding-3-large', input: text, dimensions: options.dimensions || 1536 }); embedding = response.data[0].embedding; } // Normalize if requested if (options.normalize) { embedding = this.normalizeVector(embedding); } const result = { embedding, modelUsed: modelId, processingTime: Date.now() - startTime, confidence }; // Cache the result this.modelCache.set(cacheKey, result); this.emit('embeddingGenerated', { modelId, textLength: text.length, dimensions: embedding.length, processingTime: result.processingTime }); return result; } catch (error) { this.emit('embeddingError', { modelId, error }); throw error; } } /** * Model Inference Pipeline */ async runInferencePipeline(pipelineId, input, options = {}) { const startTime = Date.now(); const modelsUsed = []; try { const pipeline = this.inferencePipelines.get(pipelineId); if (!pipeline) { throw new Error(`Pipeline ${pipelineId} not found`); } // Check cache if enabled if (options.caching !== false && pipeline.caching) { const cacheKey = `pipeline_${pipelineId}_${JSON.stringify(input)}`; if (this.modelCache.has(cacheKey)) { const cached = this.modelCache.get(cacheKey); this.emit('pipelineCacheHit', { pipelineId }); return { ...cached, executionTime: Date.now() - startTime }; } } let currentInput = input; let aggregatedConfidence = 1.0; // Preprocessing if (pipeline.preprocessing) { currentInput = await this.applyPreprocessing(currentInput, pipeline.preprocessing); } // Run models in sequence for (const modelConfig of pipeline.models) { const modelResult = await this.runSingleModel(modelConfig, currentInput); modelsUsed.push(modelConfig.modelType); currentInput = modelResult.output; aggregatedConfidence *= modelResult.confidence; } // Postprocessing let finalResult = currentInput; if (pipeline.postprocessing) { finalResult = await this.applyPostprocessing(finalResult, pipeline.postprocessing); } const result = { result: finalResult, pipeline: pipelineId, executionTime: Date.now() - startTime, modelsUsed, confidence: aggregatedConfidence }; // Cache if enabled if (options.caching !== false && pipeline.caching) { const cacheKey = `pipeline_${pipelineId}_${JSON.stringify(input)}`; this.modelCache.set(cacheKey, result); } this.emit('pipelineCompleted', { pipelineId, modelsUsed, executionTime: result.executionTime, confidence: result.confidence }); return result; } catch (error) { this.emit('pipelineError', { pipelineId, error }); throw error; } } /** * Auto-ML Feature Engineering */ async performAutoML(dataset, target, options = {}) { const startTime = Date.now(); try { // Feature engineering const engineeredFeatures = await this.autoMLEngine.performFeatureEngineering(dataset, target, options); // Model selection and training const modelResults = await this.autoMLEngine.performModelSelection(engineeredFeatures.dataset, engineeredFeatures.features, target, options); // Hyperparameter tuning const tunedModel = await this.autoMLEngine.performHyperparameterTuning(modelResults.bestModel, engineeredFeatures.dataset, target, options); // Cross-validation const performance = await this.autoMLEngine.performCrossValidation(tunedModel, engineeredFeatures.dataset, target, options.crossValidation || 5); const result = { bestModel: tunedModel, performance, features: engineeredFeatures.features, hyperparameters: tunedModel.hyperparameters, executionTime: Date.now() - startTime }; this.emit('autoMLCompleted', { taskType: options.taskType, featuresCount: result.features.length, performance: result.performance, executionTime: result.executionTime }); return result; } catch (error) { this.emit('autoMLError', { error }); throw error; } } /** * Predictive Analytics */ async performPredictiveAnalysis(data, analysisType, options = {}) { const startTime = Date.now(); try { let result; switch (analysisType) { case 'pattern-recognition': result = await this.predictiveEngine.recognizePatterns(data, options); break; case 'anomaly-detection': result = await this.predictiveEngine.detectAnomalies(data, options); break; case 'trend-forecasting': result = await this.predictiveEngine.forecastTrends(data, options); break; case 'user-behavior': result = await this.predictiveEngine.predictUserBehavior(data, options); break; default: throw new Error(`Unknown analysis type: ${analysisType}`); } const analysisResult = { ...result, executionTime: Date.now() - startTime }; this.emit('predictiveAnalysisCompleted', { analysisType, dataPoints: data.length, predictionsCount: result.predictions.length, confidence: result.confidence, executionTime: analysisResult.executionTime }); return analysisResult; } catch (error) { this.emit('predictiveAnalysisError', { analysisType, error }); throw error; } } /** * Model Management */ registerModel(modelId, config) { this.modelRegistry.set(modelId, config); this.emit('modelRegistered', { modelId, modelType: config.modelType }); } createInferencePipeline(pipelineId, pipeline) { this.inferencePipelines.set(pipelineId, pipeline); this.emit('pipelineCreated', { pipelineId, modelsCount: pipeline.models.length }); } async getModelPerformance(modelId) { return this.performanceTracker.get(modelId) || { totalInferences: 0, averageResponseTime: 0, accuracyScore: 0, lastUsed: null }; } // Private helper methods async generateCustomAPIEmbedding(text, model, options) { // Custom API embedding generation // This would integrate with external ML services return new Array(options.dimensions || 1536).fill(0).map(() => Math.random()); } normalizeVector(vector) { const magnitude = Math.sqrt(vector.reduce((sum, val) => sum + val * val, 0)); return vector.map(val => val / magnitude); } async applyPreprocessing(input, steps) { let processed = input; for (const step of steps) { processed = await this.applyPreprocessingStep(processed, step); } return processed; } async applyPostprocessing(input, steps) { let processed = input; for (const step of steps) { processed = await this.applyPostprocessingStep(processed, step); } return processed; } async applyPreprocessingStep(input, step) { // Apply preprocessing step return input; } async applyPostprocessingStep(input, step) { // Apply postprocessing step return input; } async runSingleModel(config, input) { // Run individual model return { output: input, confidence: 0.95 }; } setupPerformanceMonitoring() { // Setup model performance tracking setInterval(() => { this.emit('performanceUpdate', { modelRegistry: this.modelRegistry.size, pipelinesActive: this.inferencePipelines.size, cacheSize: this.modelCache.size, timestamp: Date.now() }); }, 30000); } } // Supporting classes class PredictiveAnalyticsEngine { config; constructor(config) { this.config = config; } async initialize() { // Initialize predictive analytics } async recognizePatterns(data, options) { return { predictions: [], confidence: 0.85, insights: ['Pattern recognition completed'], recommendations: ['Continue monitoring patterns'] }; } async detectAnomalies(data, options) { return { predictions: [], confidence: 0.90, insights: ['Anomaly detection completed'], recommendations: ['Review detected anomalies'] }; } async forecastTrends(data, options) { return { predictions: [], confidence: 0.75, insights: ['Trend forecasting completed'], recommendations: ['Monitor trend accuracy'] }; } async predictUserBehavior(data, options) { return { predictions: [], confidence: 0.80, insights: ['User behavior prediction completed'], recommendations: ['Implement behavioral interventions'] }; } } class AutoMLEngine { config; constructor(config) { this.config = config; } async initialize() { // Initialize AutoML engine } async performFeatureEngineering(dataset, target, options) { return { dataset, features: ['feature1', 'feature2', 'feature3'] }; } async performModelSelection(dataset, features, target, options) { return { bestModel: { type: 'random_forest', accuracy: 0.95 } }; } async performHyperparameterTuning(model, dataset, target, options) { return { ...model, hyperparameters: { n_estimators: 100, max_depth: 10 } }; } async performCrossValidation(model, dataset, target, folds) { return { accuracy: 0.93, precision: 0.91, recall: 0.89, f1Score: 0.90 }; } } export { MachineLearningIntegration }; //# sourceMappingURL=ml-integration.js.map