UNPKG

@codai/cbd

Version:

Codai Better Database - High-Performance Vector Memory System with HPKV-inspired architecture and MCP server

120 lines 3.68 kB
/** * Machine Learning Integration * Custom embedding models, model inference, auto-ML, and predictive analytics */ import { EventEmitter } from 'events'; interface MLModelConfig { modelType: 'embedding' | 'classification' | 'regression' | 'clustering' | 'anomaly-detection'; modelPath?: string; apiEndpoint?: string; apiKey?: string; maxTokens?: number; temperature?: number; } interface ModelInferencePipeline { id: string; name: string; models: MLModelConfig[]; preprocessing?: string[]; postprocessing?: string[]; caching: boolean; } interface PredictiveAnalytics { patternRecognition: boolean; anomalyDetection: boolean; trendForecasting: boolean; userBehaviorPrediction: boolean; performanceOptimization: boolean; } interface AutoMLConfig { enabled: boolean; featureEngineering: boolean; hyperparameterTuning: boolean; modelSelection: boolean; ensembleMethods: boolean; } declare class MachineLearningIntegration extends EventEmitter { private openai; private modelRegistry; private inferencePipelines; private modelCache; private predictiveEngine; private autoMLEngine; private performanceTracker; constructor(config: { openaiApiKey: string; modelConfigs?: MLModelConfig[]; predictiveAnalytics?: PredictiveAnalytics; autoML?: AutoMLConfig; cacheSize?: number; }); private initializeMLIntegration; /** * Custom Embedding Model Support */ generateCustomEmbedding(text: string, modelId?: string, options?: { dimensions?: number; normalize?: boolean; batchSize?: number; }): Promise<{ embedding: number[]; modelUsed: string; processingTime: number; confidence: number; }>; /** * Model Inference Pipeline */ runInferencePipeline(pipelineId: string, input: any, options?: { caching?: boolean; timeout?: number; retries?: number; }): Promise<{ result: any; pipeline: string; executionTime: number; modelsUsed: string[]; confidence: number; }>; /** * Auto-ML Feature Engineering */ performAutoML(dataset: any[], target: string, options?: { taskType?: 'classification' | 'regression' | 'clustering'; maxTime?: number; modelTypes?: string[]; crossValidation?: number; }): Promise<{ bestModel: any; performance: any; features: string[]; hyperparameters: any; executionTime: number; }>; /** * Predictive Analytics */ performPredictiveAnalysis(data: any[], analysisType: 'pattern-recognition' | 'anomaly-detection' | 'trend-forecasting' | 'user-behavior', options?: any): Promise<{ predictions: any[]; confidence: number; insights: string[]; recommendations: string[]; executionTime: number; }>; /** * Model Management */ registerModel(modelId: string, config: MLModelConfig): void; createInferencePipeline(pipelineId: string, pipeline: ModelInferencePipeline): void; getModelPerformance(modelId: string): Promise<any>; private generateCustomAPIEmbedding; private normalizeVector; private applyPreprocessing; private applyPostprocessing; private applyPreprocessingStep; private applyPostprocessingStep; private runSingleModel; private setupPerformanceMonitoring; } export { MachineLearningIntegration, MLModelConfig, ModelInferencePipeline, PredictiveAnalytics, AutoMLConfig }; //# sourceMappingURL=ml-integration.d.ts.map