@codai/cbd
Version:
Codai Better Database - High-Performance Vector Memory System with HPKV-inspired architecture and MCP server
120 lines • 3.68 kB
TypeScript
/**
* Machine Learning Integration
* Custom embedding models, model inference, auto-ML, and predictive analytics
*/
import { EventEmitter } from 'events';
interface MLModelConfig {
modelType: 'embedding' | 'classification' | 'regression' | 'clustering' | 'anomaly-detection';
modelPath?: string;
apiEndpoint?: string;
apiKey?: string;
maxTokens?: number;
temperature?: number;
}
interface ModelInferencePipeline {
id: string;
name: string;
models: MLModelConfig[];
preprocessing?: string[];
postprocessing?: string[];
caching: boolean;
}
interface PredictiveAnalytics {
patternRecognition: boolean;
anomalyDetection: boolean;
trendForecasting: boolean;
userBehaviorPrediction: boolean;
performanceOptimization: boolean;
}
interface AutoMLConfig {
enabled: boolean;
featureEngineering: boolean;
hyperparameterTuning: boolean;
modelSelection: boolean;
ensembleMethods: boolean;
}
declare class MachineLearningIntegration extends EventEmitter {
private openai;
private modelRegistry;
private inferencePipelines;
private modelCache;
private predictiveEngine;
private autoMLEngine;
private performanceTracker;
constructor(config: {
openaiApiKey: string;
modelConfigs?: MLModelConfig[];
predictiveAnalytics?: PredictiveAnalytics;
autoML?: AutoMLConfig;
cacheSize?: number;
});
private initializeMLIntegration;
/**
* Custom Embedding Model Support
*/
generateCustomEmbedding(text: string, modelId?: string, options?: {
dimensions?: number;
normalize?: boolean;
batchSize?: number;
}): Promise<{
embedding: number[];
modelUsed: string;
processingTime: number;
confidence: number;
}>;
/**
* Model Inference Pipeline
*/
runInferencePipeline(pipelineId: string, input: any, options?: {
caching?: boolean;
timeout?: number;
retries?: number;
}): Promise<{
result: any;
pipeline: string;
executionTime: number;
modelsUsed: string[];
confidence: number;
}>;
/**
* Auto-ML Feature Engineering
*/
performAutoML(dataset: any[], target: string, options?: {
taskType?: 'classification' | 'regression' | 'clustering';
maxTime?: number;
modelTypes?: string[];
crossValidation?: number;
}): Promise<{
bestModel: any;
performance: any;
features: string[];
hyperparameters: any;
executionTime: number;
}>;
/**
* Predictive Analytics
*/
performPredictiveAnalysis(data: any[], analysisType: 'pattern-recognition' | 'anomaly-detection' | 'trend-forecasting' | 'user-behavior', options?: any): Promise<{
predictions: any[];
confidence: number;
insights: string[];
recommendations: string[];
executionTime: number;
}>;
/**
* Model Management
*/
registerModel(modelId: string, config: MLModelConfig): void;
createInferencePipeline(pipelineId: string, pipeline: ModelInferencePipeline): void;
getModelPerformance(modelId: string): Promise<any>;
private generateCustomAPIEmbedding;
private normalizeVector;
private applyPreprocessing;
private applyPostprocessing;
private applyPreprocessingStep;
private applyPostprocessingStep;
private runSingleModel;
private setupPerformanceMonitoring;
}
export { MachineLearningIntegration, MLModelConfig, ModelInferencePipeline, PredictiveAnalytics, AutoMLConfig };
//# sourceMappingURL=ml-integration.d.ts.map