UNPKG

@codai/cbd

Version:

Codai Better Database - High-Performance Vector Memory System with HPKV-inspired architecture and MCP server

115 lines 3.28 kB
/** * Advanced Vector Search Engine * Enhanced capabilities for hybrid search, multi-modal embeddings, and optimization */ import { EventEmitter } from 'events'; interface HybridSearchOptions { vectorWeight?: number; keywordWeight?: number; semanticWeight?: number; maxResults?: number; minSimilarity?: number; includeMetadata?: boolean; } interface MultiModalEmbedding { text?: number[]; image?: number[]; audio?: number[]; } interface VectorCluster { id: string; centroid: number[]; members: string[]; similarity: number; } declare class AdvancedVectorSearchEngine extends EventEmitter { private openai; private vectorIndex; private metadataIndex; private keywordIndex; private clusters; private searchCache; constructor(config: { openaiApiKey: string; cacheSize?: number; clusterThreshold?: number; }); private initializeAdvancedFeatures; /** * Hybrid Search: Combine vector, keyword, and semantic search */ hybridSearch(query: string, options?: HybridSearchOptions): Promise<{ results: Array<{ id: string; content: string; score: number; matchType: 'vector' | 'keyword' | 'semantic' | 'hybrid'; metadata?: any; }>; performance: { totalTime: number; vectorTime: number; keywordTime: number; semanticTime: number; }; }>; /** * Multi-modal Vector Embeddings */ generateMultiModalEmbedding(content: { text?: string; imageUrl?: string; audioUrl?: string; }): Promise<MultiModalEmbedding>; /** * Dynamic Vector Index Optimization */ optimizeVectorIndex(): Promise<{ clustersCreated: number; indexReorganized: boolean; performanceImprovement: number; }>; /** * Batch Vector Operations */ batchVectorOperations(operations: Array<{ type: 'insert' | 'update' | 'delete' | 'search'; id?: string; vector?: number[]; query?: string; metadata?: any; }>): Promise<{ results: any[]; performance: { totalTime: number; operationsPerSecond: number; }; }>; /** * Vector Similarity Clustering */ performVectorClustering(options?: { minClusterSize?: number; maxClusters?: number; similarityThreshold?: number; }): Promise<VectorCluster[]>; private performVectorSearch; private performKeywordSearch; private performSemanticSearch; private combineSearchResults; private generateCacheKey; private setupDynamicClustering; private setupSearchCache; private setupPerformanceMonitoring; private generateImageEmbedding; private generateAudioEmbedding; private analyzeIndexStructure; private createVectorClusters; private reorganizeIndex; private measurePerformanceImprovement; private groupOperationsByType; private executeBatchOperation; private createCluster; } export { AdvancedVectorSearchEngine, HybridSearchOptions, MultiModalEmbedding, VectorCluster }; //# sourceMappingURL=advanced-vector-search.d.ts.map