@cloudcome/utils-core
Version:
cloudcome core utils
1 lines • 9.9 kB
Source Map (JSON)
{"version":3,"file":"easing.mjs","sources":["../src/easing.ts"],"sourcesContent":["/**\n * https://github.com/gre/bezier-easing\n * BezierEasing - use bezier curve for transition easing function\n * by Gaëtan Renaudeau 2014 - 2015 – MIT License\n */\n\n// These values are established by empiricism with tests (tradeoff: performance VS precision)\nconst NEWTON_ITERATIONS = 4;\nconst NEWTON_MIN_SLOPE = 0.001;\nconst SUBDIVISION_PRECISION = 0.0000001;\nconst SUBDIVISION_MAX_ITERATIONS = 10;\n\nconst kSplineTableSize = 11;\nconst kSampleStepSize = 1.0 / (kSplineTableSize - 1.0);\n\nconst float32ArraySupported = typeof Float32Array === 'function';\n\nfunction A(aA1: number, aA2: number) {\n return 1.0 - 3.0 * aA2 + 3.0 * aA1;\n}\nfunction B(aA1: number, aA2: number) {\n return 3.0 * aA2 - 6.0 * aA1;\n}\nfunction C(aA1: number) {\n return 3.0 * aA1;\n}\n\n// Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.\nfunction calcBezier(aT: number, aA1: number, aA2: number) {\n return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT;\n}\n\n// Returns dx/dt given t, x1, and x2, or dy/dt given t, y1, and y2.\nfunction getSlope(aT: number, aA1: number, aA2: number) {\n return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1);\n}\n\nfunction binarySubdivide(aX: number, aA: number, aB: number, mX1: number, mX2: number) {\n let currentX: number;\n let currentT: number;\n let i = 0;\n let aBFinal = aB;\n let aAFinal = aA;\n\n do {\n currentT = aAFinal + (aBFinal - aAFinal) / 2.0;\n currentX = calcBezier(currentT, mX1, mX2) - aX;\n if (currentX > 0.0) {\n aBFinal = currentT;\n } else {\n aAFinal = currentT;\n }\n } while (Math.abs(currentX) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS);\n return currentT;\n}\n\nfunction newtonRaphsonIterate(aX: number, aGuessT: number, mX1: number, mX2: number) {\n let aGuessTFinal = aGuessT;\n for (let i = 0; i < NEWTON_ITERATIONS; ++i) {\n const currentSlope = getSlope(aGuessTFinal, mX1, mX2);\n if (currentSlope === 0.0) {\n return aGuessTFinal;\n }\n const currentX = calcBezier(aGuessTFinal, mX1, mX2) - aX;\n aGuessTFinal -= currentX / currentSlope;\n }\n return aGuessTFinal;\n}\n\nfunction LinearEasing(x: number) {\n return x;\n}\n\n/**\n * 创建一个基于贝塞尔曲线的缓动函数。\n *\n * @param x1 - 贝塞尔曲线的第一个控制点的 X 坐标,必须在 [0, 1] 范围内。\n * @param y1 - 贝塞尔曲线的第一个控制点的 Y 坐标,必须在 [0, 1] 范围内。\n * @param x2 - 贝塞尔曲线的第二个控制点的 X 坐标,必须在 [0, 1] 范围内。\n * @param y2 - 贝塞尔曲线的第二个控制点的 Y 坐标,必须在 [0, 1] 范围内。\n * @returns 返回一个缓动函数,该函数接受一个参数 x(范围在 0 到 1 之间),并返回相应的缓动值。\n * @throws 如果 mX1 或 mX2 不在 [0, 1] 范围内,则抛出错误。\n */\nexport function createEasingFn(x1: number, y1: number, x2: number, y2: number) {\n if (!(0 <= x1 && x1 <= 1 && 0 <= x2 && x2 <= 1)) {\n throw new Error('bezier x values must be in [0, 1] range');\n }\n\n if (x1 === y1 && x2 === y2) {\n return LinearEasing;\n }\n\n // Precompute samples table\n const sampleValues = float32ArraySupported ? new Float32Array(kSplineTableSize) : new Array(kSplineTableSize);\n for (let i = 0; i < kSplineTableSize; ++i) {\n sampleValues[i] = calcBezier(i * kSampleStepSize, x1, x2);\n }\n\n function getTForX(aX: number) {\n let intervalStart = 0.0;\n let currentSample = 1;\n const lastSample = kSplineTableSize - 1;\n\n for (; currentSample !== lastSample && sampleValues[currentSample] <= aX; ++currentSample) {\n intervalStart += kSampleStepSize;\n }\n --currentSample;\n\n // Interpolate to provide an initial guess for t\n const dist = (aX - sampleValues[currentSample]) / (sampleValues[currentSample + 1] - sampleValues[currentSample]);\n const guessForT = intervalStart + dist * kSampleStepSize;\n const initialSlope = getSlope(guessForT, x1, x2);\n\n if (initialSlope >= NEWTON_MIN_SLOPE) {\n return newtonRaphsonIterate(aX, guessForT, x1, x2);\n }\n\n if (initialSlope === 0.0) {\n return guessForT;\n }\n\n return binarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize, x1, x2);\n }\n\n /**\n * 贝塞尔曲线方程\n * @param x {number} 0~1\n */\n return function easingFunc(x: number) {\n // Because JavaScript number are imprecise, we should guarantee the extremes are right.\n if (x === 0 || x === 1) {\n return x;\n }\n\n return calcBezier(getTForX(x), y1, y2);\n };\n}\n\nexport const easingEase = createEasingFn(0.25, 0.1, 0.25, 1);\nexport const easingLinear = createEasingFn(0, 0, 1, 1);\nexport const easingSnap = createEasingFn(0, 1, 0.5, 1);\nexport const easingIn = createEasingFn(0.42, 0, 1, 1);\nexport const easingOut = createEasingFn(0, 0, 0.58, 1);\nexport const easingInOut = createEasingFn(0.42, 0, 0.58, 1);\nexport const easingInQuad = createEasingFn(0.55, 0.085, 0.68, 0.53);\nexport const easingInCubic = createEasingFn(0.55, 0.055, 0.675, 0.19);\nexport const easingInQuart = createEasingFn(0.895, 0.03, 0.685, 0.22);\nexport const easingInQuint = createEasingFn(0.755, 0.05, 0.855, 0.06);\nexport const easingInSine = createEasingFn(0.47, 0, 0.745, 0.715);\nexport const easingInExpo = createEasingFn(0.95, 0.05, 0.795, 0.035);\nexport const easingInCirc = createEasingFn(0.6, 0.04, 0.98, 0.335);\nexport const easingInBack = createEasingFn(0.6, -0.28, 0.735, 0.045);\nexport const easingOutQuad = createEasingFn(0.25, 0.46, 0.45, 0.94);\nexport const easingOutCubic = createEasingFn(0.215, 0.61, 0.355, 1);\nexport const easingOutQuart = createEasingFn(0.165, 0.84, 0.44, 1);\nexport const easingOutQuint = createEasingFn(0.23, 1, 0.32, 1);\nexport const easingOutSine = createEasingFn(0.39, 0.575, 0.565, 1);\nexport const easingOutExpo = createEasingFn(0.19, 1, 0.22, 1);\nexport const easingOutCirc = createEasingFn(0.075, 0.82, 0.165, 1);\nexport const easingOutBack = createEasingFn(0.175, 0.885, 0.32, 1.275);\nexport const easingInOutQuart = createEasingFn(0.77, 0, 0.175, 1);\nexport const easingInOutQuint = createEasingFn(0.86, 0, 0.07, 1);\nexport const easingInOutSine = createEasingFn(0.445, 0.05, 0.55, 0.95);\nexport const easingInOutExpo = createEasingFn(1, 0, 0, 1);\nexport const easingInOutCirc = createEasingFn(0.785, 0.135, 0.15, 0.86);\nexport const easingInOutBack = createEasingFn(0.68, -0.55, 0.265, 1.55);\n"],"names":[],"mappings":"AAOA,MAAM,oBAAoB;AAC1B,MAAM,mBAAmB;AACzB,MAAM,wBAAwB;AAC9B,MAAM,6BAA6B;AAEnC,MAAM,mBAAmB;AACzB,MAAM,kBAAkB,KAAO,mBAAmB;AAElD,MAAM,wBAAwB,OAAO,iBAAiB;AAEtD,SAAS,EAAE,KAAa,KAAa;AAC5B,SAAA,IAAM,IAAM,MAAM,IAAM;AACjC;AACA,SAAS,EAAE,KAAa,KAAa;AAC5B,SAAA,IAAM,MAAM,IAAM;AAC3B;AACA,SAAS,EAAE,KAAa;AACtB,SAAO,IAAM;AACf;AAGA,SAAS,WAAW,IAAY,KAAa,KAAa;AACxD,WAAS,EAAE,KAAK,GAAG,IAAI,KAAK,EAAE,KAAK,GAAG,KAAK,KAAK,EAAE,GAAG,KAAK;AAC5D;AAGA,SAAS,SAAS,IAAY,KAAa,KAAa;AACtD,SAAO,IAAM,EAAE,KAAK,GAAG,IAAI,KAAK,KAAK,IAAM,EAAE,KAAK,GAAG,IAAI,KAAK,EAAE,GAAG;AACrE;AAEA,SAAS,gBAAgB,IAAY,IAAY,IAAY,KAAa,KAAa;AACjF,MAAA;AACA,MAAA;AACJ,MAAI,IAAI;AACR,MAAI,UAAU;AACd,MAAI,UAAU;AAEX,KAAA;AACU,eAAA,WAAW,UAAU,WAAW;AAC3C,eAAW,WAAW,UAAU,KAAK,GAAG,IAAI;AAC5C,QAAI,WAAW,GAAK;AACR,gBAAA;AAAA,IAAA,OACL;AACK,gBAAA;AAAA,IAAA;AAAA,EACZ,SACO,KAAK,IAAI,QAAQ,IAAI,yBAAyB,EAAE,IAAI;AACtD,SAAA;AACT;AAEA,SAAS,qBAAqB,IAAY,SAAiB,KAAa,KAAa;AACnF,MAAI,eAAe;AACnB,WAAS,IAAI,GAAG,IAAI,mBAAmB,EAAE,GAAG;AAC1C,UAAM,eAAe,SAAS,cAAc,KAAK,GAAG;AACpD,QAAI,iBAAiB,GAAK;AACjB,aAAA;AAAA,IAAA;AAET,UAAM,WAAW,WAAW,cAAc,KAAK,GAAG,IAAI;AACtD,oBAAgB,WAAW;AAAA,EAAA;AAEtB,SAAA;AACT;AAEA,SAAS,aAAa,GAAW;AACxB,SAAA;AACT;AAYO,SAAS,eAAe,IAAY,IAAY,IAAY,IAAY;AACzE,MAAA,EAAE,KAAK,MAAM,MAAM,KAAK,KAAK,MAAM,MAAM,IAAI;AACzC,UAAA,IAAI,MAAM,yCAAyC;AAAA,EAAA;AAGvD,MAAA,OAAO,MAAM,OAAO,IAAI;AACnB,WAAA;AAAA,EAAA;AAIH,QAAA,eAAe,wBAAwB,IAAI,aAAa,gBAAgB,IAAI,IAAI,MAAM,gBAAgB;AAC5G,WAAS,IAAI,GAAG,IAAI,kBAAkB,EAAE,GAAG;AACzC,iBAAa,CAAC,IAAI,WAAW,IAAI,iBAAiB,IAAI,EAAE;AAAA,EAAA;AAG1D,WAAS,SAAS,IAAY;AAC5B,QAAI,gBAAgB;AACpB,QAAI,gBAAgB;AACpB,UAAM,aAAa,mBAAmB;AAEtC,WAAO,kBAAkB,cAAc,aAAa,aAAa,KAAK,IAAI,EAAE,eAAe;AACxE,uBAAA;AAAA,IAAA;AAEjB,MAAA;AAGI,UAAA,QAAQ,KAAK,aAAa,aAAa,MAAM,aAAa,gBAAgB,CAAC,IAAI,aAAa,aAAa;AACzG,UAAA,YAAY,gBAAgB,OAAO;AACzC,UAAM,eAAe,SAAS,WAAW,IAAI,EAAE;AAE/C,QAAI,gBAAgB,kBAAkB;AACpC,aAAO,qBAAqB,IAAI,WAAW,IAAI,EAAE;AAAA,IAAA;AAGnD,QAAI,iBAAiB,GAAK;AACjB,aAAA;AAAA,IAAA;AAGT,WAAO,gBAAgB,IAAI,eAAe,gBAAgB,iBAAiB,IAAI,EAAE;AAAA,EAAA;AAO5E,SAAA,SAAS,WAAW,GAAW;AAEhC,QAAA,MAAM,KAAK,MAAM,GAAG;AACf,aAAA;AAAA,IAAA;AAGT,WAAO,WAAW,SAAS,CAAC,GAAG,IAAI,EAAE;AAAA,EACvC;AACF;AAEO,MAAM,aAAa,eAAe,MAAM,KAAK,MAAM,CAAC;AACpD,MAAM,eAAe,eAAe,GAAG,GAAG,GAAG,CAAC;AAC9C,MAAM,aAAa,eAAe,GAAG,GAAG,KAAK,CAAC;AAC9C,MAAM,WAAW,eAAe,MAAM,GAAG,GAAG,CAAC;AAC7C,MAAM,YAAY,eAAe,GAAG,GAAG,MAAM,CAAC;AAC9C,MAAM,cAAc,eAAe,MAAM,GAAG,MAAM,CAAC;AACnD,MAAM,eAAe,eAAe,MAAM,OAAO,MAAM,IAAI;AAC3D,MAAM,gBAAgB,eAAe,MAAM,OAAO,OAAO,IAAI;AAC7D,MAAM,gBAAgB,eAAe,OAAO,MAAM,OAAO,IAAI;AAC7D,MAAM,gBAAgB,eAAe,OAAO,MAAM,OAAO,IAAI;AAC7D,MAAM,eAAe,eAAe,MAAM,GAAG,OAAO,KAAK;AACzD,MAAM,eAAe,eAAe,MAAM,MAAM,OAAO,KAAK;AAC5D,MAAM,eAAe,eAAe,KAAK,MAAM,MAAM,KAAK;AAC1D,MAAM,eAAe,eAAe,KAAK,OAAO,OAAO,KAAK;AAC5D,MAAM,gBAAgB,eAAe,MAAM,MAAM,MAAM,IAAI;AAC3D,MAAM,iBAAiB,eAAe,OAAO,MAAM,OAAO,CAAC;AAC3D,MAAM,iBAAiB,eAAe,OAAO,MAAM,MAAM,CAAC;AAC1D,MAAM,iBAAiB,eAAe,MAAM,GAAG,MAAM,CAAC;AACtD,MAAM,gBAAgB,eAAe,MAAM,OAAO,OAAO,CAAC;AAC1D,MAAM,gBAAgB,eAAe,MAAM,GAAG,MAAM,CAAC;AACrD,MAAM,gBAAgB,eAAe,OAAO,MAAM,OAAO,CAAC;AAC1D,MAAM,gBAAgB,eAAe,OAAO,OAAO,MAAM,KAAK;AAC9D,MAAM,mBAAmB,eAAe,MAAM,GAAG,OAAO,CAAC;AACzD,MAAM,mBAAmB,eAAe,MAAM,GAAG,MAAM,CAAC;AACxD,MAAM,kBAAkB,eAAe,OAAO,MAAM,MAAM,IAAI;AAC9D,MAAM,kBAAkB,eAAe,GAAG,GAAG,GAAG,CAAC;AACjD,MAAM,kBAAkB,eAAe,OAAO,OAAO,MAAM,IAAI;AAC/D,MAAM,kBAAkB,eAAe,MAAM,OAAO,OAAO,IAAI;"}