@cesium/engine
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
773 lines (671 loc) • 23.9 kB
JavaScript
import AttributeCompression from "./AttributeCompression.js";
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import Check from "./Check.js";
import ComponentDatatype from "./ComponentDatatype.js";
import defined from "./defined.js";
import CesiumMath from "./Math.js";
import Matrix4 from "./Matrix4.js";
import VerticalExaggeration from "./VerticalExaggeration.js";
import TerrainQuantization from "./TerrainQuantization.js";
const cartesian3Scratch = new Cartesian3();
const cartesian3DimScratch = new Cartesian3();
const cartesian2Scratch = new Cartesian2();
const matrix4Scratch = new Matrix4();
const matrix4Scratch2 = new Matrix4();
const SHIFT_LEFT_12 = Math.pow(2.0, 12.0);
/**
* Data used to quantize and pack the terrain mesh. The position can be unpacked for picking and all attributes
* are unpacked in the vertex shader.
*
* @alias TerrainEncoding
* @constructor
*
* @param {Cartesian3} center The center point of the vertices.
* @param {AxisAlignedBoundingBox} [axisAlignedBoundingBox] The bounds of the tile in the east-north-up coordinates at the tiles center.
* @param {number} [minimumHeight] The minimum height.
* @param {number} [maximumHeight] The maximum height.
* @param {Matrix4} [fromENU] The east-north-up to fixed frame matrix at the center of the terrain mesh.
* @param {boolean} [hasVertexNormals=false] If the mesh has vertex normals.
* @param {boolean} [hasWebMercatorT=false] true if the terrain data includes a Web Mercator texture coordinate; otherwise, false.
* @param {boolean} [hasGeodeticSurfaceNormals=false] true if the terrain data includes geodetic surface normals; otherwise, false.
* @param {number} [exaggeration=1.0] A scalar used to exaggerate terrain.
* @param {number} [exaggerationRelativeHeight=0.0] The relative height from which terrain is exaggerated.
*
* @private
*/
function TerrainEncoding(
center,
axisAlignedBoundingBox,
minimumHeight,
maximumHeight,
fromENU,
hasVertexNormals,
hasWebMercatorT,
hasGeodeticSurfaceNormals,
exaggeration,
exaggerationRelativeHeight,
) {
let quantization = TerrainQuantization.NONE;
let toENU;
let matrix;
if (
defined(axisAlignedBoundingBox) &&
defined(minimumHeight) &&
defined(maximumHeight) &&
defined(fromENU)
) {
const minimum = axisAlignedBoundingBox.minimum;
const maximum = axisAlignedBoundingBox.maximum;
const dimensions = Cartesian3.subtract(
maximum,
minimum,
cartesian3DimScratch,
);
const hDim = maximumHeight - minimumHeight;
const maxDim = Math.max(Cartesian3.maximumComponent(dimensions), hDim);
if (maxDim < SHIFT_LEFT_12 - 1.0) {
quantization = TerrainQuantization.BITS12;
} else {
quantization = TerrainQuantization.NONE;
}
// Scale and bias from [0,1] to [ENU min, ENU max]
// Also compute the inverse of the scale and bias
let st = Matrix4.fromScale(dimensions, matrix4Scratch);
st = Matrix4.setTranslation(st, minimum, st);
let invSt = Matrix4.fromScale(
Cartesian3.fromElements(
1.0 / dimensions.x,
1.0 / dimensions.y,
1.0 / dimensions.z,
cartesian3Scratch,
),
matrix4Scratch2,
);
invSt = Matrix4.multiplyByTranslation(
invSt,
Cartesian3.negate(minimum, cartesian3Scratch),
invSt,
);
matrix = Matrix4.clone(fromENU, new Matrix4());
let rtcOffset = Matrix4.getTranslation(fromENU, cartesian3Scratch);
rtcOffset = Cartesian3.subtract(rtcOffset, center, cartesian3Scratch);
matrix = Matrix4.setTranslation(matrix, rtcOffset, matrix);
matrix = Matrix4.multiply(matrix, st, matrix);
toENU = Matrix4.inverseTransformation(fromENU, new Matrix4());
toENU = Matrix4.multiply(invSt, toENU, toENU);
fromENU = Matrix4.multiply(fromENU, st, new Matrix4());
}
/**
* How the vertices of the mesh were compressed.
* @type {TerrainQuantization}
*/
this.quantization = quantization;
/**
* The minimum height of the tile including the skirts.
* @type {number|undefined}
*/
this.minimumHeight = minimumHeight;
/**
* The maximum height of the tile.
* @type {number|undefined}
*/
this.maximumHeight = maximumHeight;
/**
* The center of the tile.
* @type {Cartesian3}
*/
this.center = Cartesian3.clone(center);
/**
* A matrix that takes a vertex from the tile, transforms it to east-north-up at the center and scales
* it so each component is in the [0, 1] range.
* @type {Matrix4|undefined}
*/
this.toScaledENU = toENU;
/**
* A matrix that restores a vertex transformed with toScaledENU back to the earth fixed reference frame
* @type {Matrix4|undefined}
*/
this.fromScaledENU = fromENU;
/**
* The matrix used to decompress the terrain vertices in the shader for RTE rendering.
* @type {Matrix4|undefined}
*/
this.matrix = matrix;
/**
* The terrain mesh contains normals.
* @type {boolean}
*/
this.hasVertexNormals = hasVertexNormals ?? false;
/**
* The terrain mesh contains a vertical texture coordinate following the Web Mercator projection.
* @type {boolean}
*/
this.hasWebMercatorT = hasWebMercatorT ?? false;
/**
* The terrain mesh contains geodetic surface normals, used for terrain exaggeration.
* @type {boolean}
*/
this.hasGeodeticSurfaceNormals = hasGeodeticSurfaceNormals ?? false;
/**
* A scalar used to exaggerate terrain.
* @type {number}
*/
this.exaggeration = exaggeration ?? 1.0;
/**
* The relative height from which terrain is exaggerated.
*/
this.exaggerationRelativeHeight = exaggerationRelativeHeight ?? 0.0;
/**
* The number of components in each vertex. This value can differ with different quantizations.
* @type {number}
*/
this.stride = 0;
this._offsetGeodeticSurfaceNormal = 0;
this._offsetVertexNormal = 0;
// Calculate the stride and offsets declared above
this._calculateStrideAndOffsets();
}
/**
* Encode information about the terrain at a given position into the vertex buffer.
* Position, texture coordinates, height, and (optionally) normal, projection information,
* and geodetic surface normal are all packed into the same buffer.
*
* @param {Float32Array} vertexBuffer The buffer to write to.
* @param {number} bufferIndex The index into the buffer to start writing at.
* @param {Cartesian3} position The position of the vertex.
* @param {Cartesian2} uv The texture coordinates of the vertex.
* @param {number} height The height of the vertex.
* @param {Cartesian2} [normalToPack] The normal vector of the vertex.
* @param {number} [webMercatorT] The Web Mercator texture coordinate of the vertex.
* @param {Cartesian3} [geodeticSurfaceNormal] The geodetic surface normal of the vertex.
*/
TerrainEncoding.prototype.encode = function (
vertexBuffer,
bufferIndex,
position,
uv,
height,
normalToPack,
webMercatorT,
geodeticSurfaceNormal,
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("vertexBuffer", vertexBuffer);
Check.typeOf.number("bufferIndex", bufferIndex);
Check.typeOf.object("position", position);
Check.typeOf.object("uv", uv);
Check.typeOf.number("height", height);
//>>includeEnd('debug');
const u = uv.x;
const v = uv.y;
if (this.quantization === TerrainQuantization.BITS12) {
position = Matrix4.multiplyByPoint(
this.toScaledENU,
position,
cartesian3Scratch,
);
position.x = CesiumMath.clamp(position.x, 0.0, 1.0);
position.y = CesiumMath.clamp(position.y, 0.0, 1.0);
position.z = CesiumMath.clamp(position.z, 0.0, 1.0);
const hDim = this.maximumHeight - this.minimumHeight;
const h = CesiumMath.clamp((height - this.minimumHeight) / hDim, 0.0, 1.0);
Cartesian2.fromElements(position.x, position.y, cartesian2Scratch);
const compressed0 =
AttributeCompression.compressTextureCoordinates(cartesian2Scratch);
Cartesian2.fromElements(position.z, h, cartesian2Scratch);
const compressed1 =
AttributeCompression.compressTextureCoordinates(cartesian2Scratch);
Cartesian2.fromElements(u, v, cartesian2Scratch);
const compressed2 =
AttributeCompression.compressTextureCoordinates(cartesian2Scratch);
vertexBuffer[bufferIndex++] = compressed0;
vertexBuffer[bufferIndex++] = compressed1;
vertexBuffer[bufferIndex++] = compressed2;
if (this.hasWebMercatorT) {
Cartesian2.fromElements(webMercatorT, 0.0, cartesian2Scratch);
const compressed3 =
AttributeCompression.compressTextureCoordinates(cartesian2Scratch);
vertexBuffer[bufferIndex++] = compressed3;
}
} else {
vertexBuffer[bufferIndex++] = position.x - this.center.x;
vertexBuffer[bufferIndex++] = position.y - this.center.y;
vertexBuffer[bufferIndex++] = position.z - this.center.z;
vertexBuffer[bufferIndex++] = height;
vertexBuffer[bufferIndex++] = u;
vertexBuffer[bufferIndex++] = v;
if (this.hasWebMercatorT) {
vertexBuffer[bufferIndex++] = webMercatorT;
}
}
if (this.hasVertexNormals) {
vertexBuffer[bufferIndex++] =
AttributeCompression.octPackFloat(normalToPack);
}
if (this.hasGeodeticSurfaceNormals) {
vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.x;
vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.y;
vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.z;
}
return bufferIndex;
};
const scratchPosition = new Cartesian3();
const scratchGeodeticSurfaceNormal = new Cartesian3();
/**
* Add geodetic surface normals to a terrain vertex buffer.
* The new buffer will be larger than the old buffer.
*
* @param {Float32Array} oldBuffer The buffer without geodetic surface normals.
* @param {Float32Array} newBuffer The buffer with geodetic surface normals.
* @param {Ellipsoid} ellipsoid The ellipsoid to use to compute the geodetic surface normals.
*/
TerrainEncoding.prototype.addGeodeticSurfaceNormals = function (
oldBuffer,
newBuffer,
ellipsoid,
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("oldBuffer", oldBuffer);
Check.typeOf.object("newBuffer", newBuffer);
Check.typeOf.object("ellipsoid", ellipsoid);
//>>includeEnd('debug');
if (this.hasGeodeticSurfaceNormals) {
return;
}
const oldStride = this.stride;
const vertexCount = oldBuffer.length / oldStride;
this.hasGeodeticSurfaceNormals = true;
this._calculateStrideAndOffsets();
const newStride = this.stride;
for (let index = 0; index < vertexCount; index++) {
for (let offset = 0; offset < oldStride; offset++) {
const oldIndex = index * oldStride + offset;
const newIndex = index * newStride + offset;
newBuffer[newIndex] = oldBuffer[oldIndex];
}
const position = this.decodePosition(newBuffer, index, scratchPosition);
const geodeticSurfaceNormal = ellipsoid.geodeticSurfaceNormal(
position,
scratchGeodeticSurfaceNormal,
);
const bufferIndex = index * newStride + this._offsetGeodeticSurfaceNormal;
newBuffer[bufferIndex] = geodeticSurfaceNormal.x;
newBuffer[bufferIndex + 1] = geodeticSurfaceNormal.y;
newBuffer[bufferIndex + 2] = geodeticSurfaceNormal.z;
}
};
/**
* Remove geodetic surface normals from a terrain vertex buffer.
*
* @param {Float32Array} oldBuffer The buffer with geodetic surface normals.
* @param {Float32Array} newBuffer The buffer without geodetic surface normals.
*/
TerrainEncoding.prototype.removeGeodeticSurfaceNormals = function (
oldBuffer,
newBuffer,
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("oldBuffer", oldBuffer);
Check.typeOf.object("newBuffer", newBuffer);
//>>includeEnd('debug');
if (!this.hasGeodeticSurfaceNormals) {
return;
}
const oldStride = this.stride;
const vertexCount = oldBuffer.length / oldStride;
this.hasGeodeticSurfaceNormals = false;
this._calculateStrideAndOffsets();
const newStride = this.stride;
for (let index = 0; index < vertexCount; index++) {
for (let offset = 0; offset < newStride; offset++) {
const oldIndex = index * oldStride + offset;
const newIndex = index * newStride + offset;
newBuffer[newIndex] = oldBuffer[oldIndex];
}
}
};
/**
* Decode a position from the vertex buffer.
*
* @param {Float32Array} buffer The buffer to decode from.
* @param {number} index The index of the vertex to decode.
* @param {Cartesian3} [result] The object to store the result in.
* @returns {Cartesian3} The decoded position.
*/
TerrainEncoding.prototype.decodePosition = function (buffer, index, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("buffer", buffer);
Check.typeOf.number("index", index);
//>>includeEnd('debug');
if (!defined(result)) {
result = new Cartesian3();
}
index *= this.stride;
if (this.quantization === TerrainQuantization.BITS12) {
const xy = AttributeCompression.decompressTextureCoordinates(
buffer[index],
cartesian2Scratch,
);
result.x = xy.x;
result.y = xy.y;
const zh = AttributeCompression.decompressTextureCoordinates(
buffer[index + 1],
cartesian2Scratch,
);
result.z = zh.x;
return Matrix4.multiplyByPoint(this.fromScaledENU, result, result);
}
result.x = buffer[index];
result.y = buffer[index + 1];
result.z = buffer[index + 2];
return Cartesian3.add(result, this.center, result);
};
/**
* Decode a position from the vertex buffer and apply vertical exaggeration.
*
* @param {Float32Array} buffer
* @param {number} index
* @param {Cartesian3} [result]
* @returns {Cartesian3} The exaggerated position.
*/
TerrainEncoding.prototype.getExaggeratedPosition = function (
buffer,
index,
result,
) {
result = this.decodePosition(buffer, index, result);
const exaggeration = this.exaggeration;
const exaggerationRelativeHeight = this.exaggerationRelativeHeight;
const hasExaggeration = exaggeration !== 1.0;
if (hasExaggeration && this.hasGeodeticSurfaceNormals) {
const geodeticSurfaceNormal = this.decodeGeodeticSurfaceNormal(
buffer,
index,
scratchGeodeticSurfaceNormal,
);
const rawHeight = this.decodeHeight(buffer, index);
const heightDifference =
VerticalExaggeration.getHeight(
rawHeight,
exaggeration,
exaggerationRelativeHeight,
) - rawHeight;
// some math is unrolled for better performance
result.x += geodeticSurfaceNormal.x * heightDifference;
result.y += geodeticSurfaceNormal.y * heightDifference;
result.z += geodeticSurfaceNormal.z * heightDifference;
}
return result;
};
/**
* Decode texture coordinates from the vertex buffer.
*
* @param {Float32Array} buffer The buffer to decode from.
* @param {number} index The index of the vertex to decode.
* @param {Cartesian2} [result] The object to store the result in.
* @returns {Cartesian2} The decoded texture coordinates.
*/
TerrainEncoding.prototype.decodeTextureCoordinates = function (
buffer,
index,
result,
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("buffer", buffer);
Check.typeOf.number("index", index);
//>>includeEnd('debug');
if (!defined(result)) {
result = new Cartesian2();
}
index *= this.stride;
if (this.quantization === TerrainQuantization.BITS12) {
return AttributeCompression.decompressTextureCoordinates(
buffer[index + 2],
result,
);
}
return Cartesian2.fromElements(buffer[index + 4], buffer[index + 5], result);
};
/**
* Decode a height from the vertex buffer.
*
* @param {Float32Array} buffer The buffer to decode from.
* @param {number} index The index of the vertex to decode.
* @returns {number} The decoded height.
*/
TerrainEncoding.prototype.decodeHeight = function (buffer, index) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("buffer", buffer);
Check.typeOf.number("index", index);
//>>includeEnd('debug');
index *= this.stride;
if (this.quantization === TerrainQuantization.BITS12) {
const zh = AttributeCompression.decompressTextureCoordinates(
buffer[index + 1],
cartesian2Scratch,
);
return (
zh.y * (this.maximumHeight - this.minimumHeight) + this.minimumHeight
);
}
return buffer[index + 3];
};
/**
* Decode a web mercator T coordinate from the vertex buffer.
*
* @param {Float32Array} buffer The buffer to decode from.
* @param {number} index The index of the vertex to decode.
* @returns {number} The decoded web mercator T coordinate.
*/
TerrainEncoding.prototype.decodeWebMercatorT = function (buffer, index) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("buffer", buffer);
Check.typeOf.number("index", index);
//>>includeEnd('debug');
index *= this.stride;
if (this.quantization === TerrainQuantization.BITS12) {
return AttributeCompression.decompressTextureCoordinates(
buffer[index + 3],
cartesian2Scratch,
).x;
}
return buffer[index + 6];
};
/**
* Decode an oct-encoded normal from the vertex buffer.
*
* @param {Float32Array} buffer The buffer to decode from.
* @param {number} index The index of the vertex to decode.
* @param {Cartesian2} [result] The object to store the result in.
* @returns {Cartesian2} The decoded oct-encoded normal.
*/
TerrainEncoding.prototype.getOctEncodedNormal = function (
buffer,
index,
result,
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("buffer", buffer);
Check.typeOf.number("index", index);
//>>includeEnd('debug');
index = index * this.stride + this._offsetVertexNormal;
const temp = buffer[index] / 256.0;
const x = Math.floor(temp);
const y = (temp - x) * 256.0;
return Cartesian2.fromElements(x, y, result);
};
/**
* @param {Float32Array} buffer
* @param {number} index
* @param {Cartesian3} result
* @returns {Cartesian3}
*/
TerrainEncoding.prototype.decodeNormal = function (buffer, index, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("buffer", buffer);
Check.typeOf.number("index", index);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
const bufferIndex = (index = index * this.stride + this._offsetVertexNormal);
return AttributeCompression.octDecodeFloat(buffer[bufferIndex], result);
};
/**
* Decode a geodetic surface normal from the vertex buffer.
*
* @param {Float32Array} buffer The buffer to decode from.
* @param {number} index The index of the vertex to decode.
* @param {Cartesian3} result The object to store the result in.
* @returns {Cartesian3} The decoded geodetic surface normal.
*/
TerrainEncoding.prototype.decodeGeodeticSurfaceNormal = function (
buffer,
index,
result,
) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("buffer", buffer);
Check.typeOf.number("index", index);
Check.typeOf.object("result", result);
//>>includeEnd('debug');
index = index * this.stride + this._offsetGeodeticSurfaceNormal;
result.x = buffer[index];
result.y = buffer[index + 1];
result.z = buffer[index + 2];
return result;
};
/**
* Calculate the stride and offsets for sampling the vertex buffer.
*/
TerrainEncoding.prototype._calculateStrideAndOffsets = function () {
let vertexStride = 0;
switch (this.quantization) {
case TerrainQuantization.BITS12:
vertexStride += 3;
break;
default:
vertexStride += 6;
}
if (this.hasWebMercatorT) {
vertexStride += 1;
}
if (this.hasVertexNormals) {
this._offsetVertexNormal = vertexStride;
vertexStride += 1;
}
if (this.hasGeodeticSurfaceNormals) {
this._offsetGeodeticSurfaceNormal = vertexStride;
vertexStride += 3;
}
this.stride = vertexStride;
};
const attributesIndicesNone = {
position3DAndHeight: 0,
textureCoordAndEncodedNormals: 1,
geodeticSurfaceNormal: 2,
};
const attributesIndicesBits12 = {
compressed0: 0,
compressed1: 1,
geodeticSurfaceNormal: 2,
};
/**
* Get descriptors of the attributes stored in the vertex buffer.
*
* @param {Float32Array} buffer The vertex buffer.
* @returns {object[]} The attributes.
*/
TerrainEncoding.prototype.getAttributes = function (buffer) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object("buffer", buffer);
//>>includeEnd('debug');
const datatype = ComponentDatatype.FLOAT;
const sizeInBytes = ComponentDatatype.getSizeInBytes(datatype);
const strideInBytes = this.stride * sizeInBytes;
let offsetInBytes = 0;
const attributes = [];
function addAttribute(index, componentsPerAttribute) {
attributes.push({
index: index,
vertexBuffer: buffer,
componentDatatype: datatype,
componentsPerAttribute: componentsPerAttribute,
offsetInBytes: offsetInBytes,
strideInBytes: strideInBytes,
});
offsetInBytes += componentsPerAttribute * sizeInBytes;
}
if (this.quantization === TerrainQuantization.NONE) {
addAttribute(attributesIndicesNone.position3DAndHeight, 4);
let componentsTexCoordAndNormals = 2;
componentsTexCoordAndNormals += this.hasWebMercatorT ? 1 : 0;
componentsTexCoordAndNormals += this.hasVertexNormals ? 1 : 0;
addAttribute(
attributesIndicesNone.textureCoordAndEncodedNormals,
componentsTexCoordAndNormals,
);
if (this.hasGeodeticSurfaceNormals) {
addAttribute(attributesIndicesNone.geodeticSurfaceNormal, 3);
}
} else {
// When there is no webMercatorT or vertex normals, the attribute only needs 3 components: x/y, z/h, u/v.
// WebMercatorT and vertex normals each take up one component, so if only one of them is present the first
// attribute gets a 4th component. If both are present, we need an additional attribute that has 1 component.
const usingAttribute0Component4 =
this.hasWebMercatorT || this.hasVertexNormals;
const usingAttribute1Component1 =
this.hasWebMercatorT && this.hasVertexNormals;
addAttribute(
attributesIndicesBits12.compressed0,
usingAttribute0Component4 ? 4 : 3,
);
if (usingAttribute1Component1) {
addAttribute(attributesIndicesBits12.compressed1, 1);
}
if (this.hasGeodeticSurfaceNormals) {
addAttribute(attributesIndicesBits12.geodeticSurfaceNormal, 3);
}
}
return attributes;
};
/**
* Get indices pointing to the attribute locations in the vertex buffer.
*
* @returns {object} The attribute indices.
*/
TerrainEncoding.prototype.getAttributeLocations = function () {
if (this.quantization === TerrainQuantization.NONE) {
return attributesIndicesNone;
}
return attributesIndicesBits12;
};
/**
* Clones a TerrainEncoding object.
*
* @param {TerrainEncoding} [encoding] The encoding to clone.
* @param {TerrainEncoding} [result] The object to store the cloned encoding.
* @returns {TerrainEncoding|undefined} The cloned encoding.
*/
TerrainEncoding.clone = function (encoding, result) {
if (!defined(encoding)) {
return undefined;
}
if (!defined(result)) {
result = new TerrainEncoding();
}
result.quantization = encoding.quantization;
result.minimumHeight = encoding.minimumHeight;
result.maximumHeight = encoding.maximumHeight;
result.center = Cartesian3.clone(encoding.center);
result.toScaledENU = Matrix4.clone(encoding.toScaledENU);
result.fromScaledENU = Matrix4.clone(encoding.fromScaledENU);
result.matrix = Matrix4.clone(encoding.matrix);
result.hasVertexNormals = encoding.hasVertexNormals;
result.hasWebMercatorT = encoding.hasWebMercatorT;
result.hasGeodeticSurfaceNormals = encoding.hasGeodeticSurfaceNormals;
result.exaggeration = encoding.exaggeration;
result.exaggerationRelativeHeight = encoding.exaggerationRelativeHeight;
result._calculateStrideAndOffsets();
return result;
};
export default TerrainEncoding;