@cesium/engine
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
148 lines (126 loc) • 5 kB
JavaScript
import Cartesian3 from "./Cartesian3.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import CesiumMath from "./Math.js";
const scaleToGeodeticSurfaceIntersection = new Cartesian3();
const scaleToGeodeticSurfaceGradient = new Cartesian3();
/**
* Scales the provided Cartesian position along the geodetic surface normal
* so that it is on the surface of this ellipsoid. If the position is
* at the center of the ellipsoid, this function returns undefined.
*
* @param {Cartesian3} cartesian The Cartesian position to scale.
* @param {Cartesian3} oneOverRadii One over radii of the ellipsoid.
* @param {Cartesian3} oneOverRadiiSquared One over radii squared of the ellipsoid.
* @param {number} centerToleranceSquared Tolerance for closeness to the center.
* @param {Cartesian3} [result] The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter, a new Cartesian3 instance if none was provided, or undefined if the position is at the center.
*
* @function scaleToGeodeticSurface
*
* @private
*/
function scaleToGeodeticSurface(
cartesian,
oneOverRadii,
oneOverRadiiSquared,
centerToleranceSquared,
result,
) {
//>>includeStart('debug', pragmas.debug);
if (!defined(cartesian)) {
throw new DeveloperError("cartesian is required.");
}
if (!defined(oneOverRadii)) {
throw new DeveloperError("oneOverRadii is required.");
}
if (!defined(oneOverRadiiSquared)) {
throw new DeveloperError("oneOverRadiiSquared is required.");
}
if (!defined(centerToleranceSquared)) {
throw new DeveloperError("centerToleranceSquared is required.");
}
//>>includeEnd('debug');
const positionX = cartesian.x;
const positionY = cartesian.y;
const positionZ = cartesian.z;
const oneOverRadiiX = oneOverRadii.x;
const oneOverRadiiY = oneOverRadii.y;
const oneOverRadiiZ = oneOverRadii.z;
const x2 = positionX * positionX * oneOverRadiiX * oneOverRadiiX;
const y2 = positionY * positionY * oneOverRadiiY * oneOverRadiiY;
const z2 = positionZ * positionZ * oneOverRadiiZ * oneOverRadiiZ;
// Compute the squared ellipsoid norm.
const squaredNorm = x2 + y2 + z2;
const ratio = Math.sqrt(1.0 / squaredNorm);
// As an initial approximation, assume that the radial intersection is the projection point.
const intersection = Cartesian3.multiplyByScalar(
cartesian,
ratio,
scaleToGeodeticSurfaceIntersection,
);
// If the position is near the center, the iteration will not converge.
if (squaredNorm < centerToleranceSquared) {
return !isFinite(ratio)
? undefined
: Cartesian3.clone(intersection, result);
}
const oneOverRadiiSquaredX = oneOverRadiiSquared.x;
const oneOverRadiiSquaredY = oneOverRadiiSquared.y;
const oneOverRadiiSquaredZ = oneOverRadiiSquared.z;
// Use the gradient at the intersection point in place of the true unit normal.
// The difference in magnitude will be absorbed in the multiplier.
const gradient = scaleToGeodeticSurfaceGradient;
gradient.x = intersection.x * oneOverRadiiSquaredX * 2.0;
gradient.y = intersection.y * oneOverRadiiSquaredY * 2.0;
gradient.z = intersection.z * oneOverRadiiSquaredZ * 2.0;
// Compute the initial guess at the normal vector multiplier, lambda.
let lambda =
((1.0 - ratio) * Cartesian3.magnitude(cartesian)) /
(0.5 * Cartesian3.magnitude(gradient));
let correction = 0.0;
let func;
let denominator;
let xMultiplier;
let yMultiplier;
let zMultiplier;
let xMultiplier2;
let yMultiplier2;
let zMultiplier2;
let xMultiplier3;
let yMultiplier3;
let zMultiplier3;
do {
lambda -= correction;
xMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredX);
yMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredY);
zMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredZ);
xMultiplier2 = xMultiplier * xMultiplier;
yMultiplier2 = yMultiplier * yMultiplier;
zMultiplier2 = zMultiplier * zMultiplier;
xMultiplier3 = xMultiplier2 * xMultiplier;
yMultiplier3 = yMultiplier2 * yMultiplier;
zMultiplier3 = zMultiplier2 * zMultiplier;
func = x2 * xMultiplier2 + y2 * yMultiplier2 + z2 * zMultiplier2 - 1.0;
// "denominator" here refers to the use of this expression in the velocity and acceleration
// computations in the sections to follow.
denominator =
x2 * xMultiplier3 * oneOverRadiiSquaredX +
y2 * yMultiplier3 * oneOverRadiiSquaredY +
z2 * zMultiplier3 * oneOverRadiiSquaredZ;
const derivative = -2.0 * denominator;
correction = func / derivative;
} while (Math.abs(func) > CesiumMath.EPSILON12);
if (!defined(result)) {
return new Cartesian3(
positionX * xMultiplier,
positionY * yMultiplier,
positionZ * zMultiplier,
);
}
result.x = positionX * xMultiplier;
result.y = positionY * yMultiplier;
result.z = positionZ * zMultiplier;
return result;
}
export default scaleToGeodeticSurface;