@cesium/engine
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
295 lines (255 loc) • 9.94 kB
JavaScript
import arrayRemoveDuplicates from "./arrayRemoveDuplicates.js";
import BoundingRectangle from "./BoundingRectangle.js";
import BoundingSphere from "./BoundingSphere.js";
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import ComponentDatatype from "./ComponentDatatype.js";
import CornerType from "./CornerType.js";
import Frozen from "./Frozen.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import Ellipsoid from "./Ellipsoid.js";
import Geometry from "./Geometry.js";
import GeometryAttribute from "./GeometryAttribute.js";
import GeometryAttributes from "./GeometryAttributes.js";
import IndexDatatype from "./IndexDatatype.js";
import CesiumMath from "./Math.js";
import PolygonPipeline from "./PolygonPipeline.js";
import PolylineVolumeGeometryLibrary from "./PolylineVolumeGeometryLibrary.js";
import PrimitiveType from "./PrimitiveType.js";
import WindingOrder from "./WindingOrder.js";
function computeAttributes(positions, shape) {
const attributes = new GeometryAttributes();
attributes.position = new GeometryAttribute({
componentDatatype: ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: positions,
});
const shapeLength = shape.length;
const vertexCount = attributes.position.values.length / 3;
const positionLength = positions.length / 3;
const shapeCount = positionLength / shapeLength;
const indices = IndexDatatype.createTypedArray(
vertexCount,
2 * shapeLength * (shapeCount + 1),
);
let i, j;
let index = 0;
i = 0;
let offset = i * shapeLength;
for (j = 0; j < shapeLength - 1; j++) {
indices[index++] = j + offset;
indices[index++] = j + offset + 1;
}
indices[index++] = shapeLength - 1 + offset;
indices[index++] = offset;
i = shapeCount - 1;
offset = i * shapeLength;
for (j = 0; j < shapeLength - 1; j++) {
indices[index++] = j + offset;
indices[index++] = j + offset + 1;
}
indices[index++] = shapeLength - 1 + offset;
indices[index++] = offset;
for (i = 0; i < shapeCount - 1; i++) {
const firstOffset = shapeLength * i;
const secondOffset = firstOffset + shapeLength;
for (j = 0; j < shapeLength; j++) {
indices[index++] = j + firstOffset;
indices[index++] = j + secondOffset;
}
}
const geometry = new Geometry({
attributes: attributes,
indices: IndexDatatype.createTypedArray(vertexCount, indices),
boundingSphere: BoundingSphere.fromVertices(positions),
primitiveType: PrimitiveType.LINES,
});
return geometry;
}
/**
* A description of a polyline with a volume (a 2D shape extruded along a polyline).
*
* @alias PolylineVolumeOutlineGeometry
* @constructor
*
* @param {object} options Object with the following properties:
* @param {Cartesian3[]} options.polylinePositions An array of positions that define the center of the polyline volume.
* @param {Cartesian2[]} options.shapePositions An array of positions that define the shape to be extruded along the polyline
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.default] The ellipsoid to be used as a reference.
* @param {number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
* @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners.
*
* @see PolylineVolumeOutlineGeometry#createGeometry
*
* @example
* function computeCircle(radius) {
* const positions = [];
* for (let i = 0; i < 360; i++) {
* const radians = Cesium.Math.toRadians(i);
* positions.push(new Cesium.Cartesian2(radius * Math.cos(radians), radius * Math.sin(radians)));
* }
* return positions;
* }
*
* const volumeOutline = new Cesium.PolylineVolumeOutlineGeometry({
* polylinePositions : Cesium.Cartesian3.fromDegreesArray([
* -72.0, 40.0,
* -70.0, 35.0
* ]),
* shapePositions : computeCircle(100000.0)
* });
*/
function PolylineVolumeOutlineGeometry(options) {
options = options ?? Frozen.EMPTY_OBJECT;
const positions = options.polylinePositions;
const shape = options.shapePositions;
//>>includeStart('debug', pragmas.debug);
if (!defined(positions)) {
throw new DeveloperError("options.polylinePositions is required.");
}
if (!defined(shape)) {
throw new DeveloperError("options.shapePositions is required.");
}
//>>includeEnd('debug');
this._positions = positions;
this._shape = shape;
this._ellipsoid = Ellipsoid.clone(options.ellipsoid ?? Ellipsoid.default);
this._cornerType = options.cornerType ?? CornerType.ROUNDED;
this._granularity = options.granularity ?? CesiumMath.RADIANS_PER_DEGREE;
this._workerName = "createPolylineVolumeOutlineGeometry";
let numComponents = 1 + positions.length * Cartesian3.packedLength;
numComponents += 1 + shape.length * Cartesian2.packedLength;
/**
* The number of elements used to pack the object into an array.
* @type {number}
*/
this.packedLength = numComponents + Ellipsoid.packedLength + 2;
}
/**
* Stores the provided instance into the provided array.
*
* @param {PolylineVolumeOutlineGeometry} value The value to pack.
* @param {number[]} array The array to pack into.
* @param {number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {number[]} The array that was packed into
*/
PolylineVolumeOutlineGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError("value is required");
}
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
let i;
const positions = value._positions;
let length = positions.length;
array[startingIndex++] = length;
for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
Cartesian3.pack(positions[i], array, startingIndex);
}
const shape = value._shape;
length = shape.length;
array[startingIndex++] = length;
for (i = 0; i < length; ++i, startingIndex += Cartesian2.packedLength) {
Cartesian2.pack(shape[i], array, startingIndex);
}
Ellipsoid.pack(value._ellipsoid, array, startingIndex);
startingIndex += Ellipsoid.packedLength;
array[startingIndex++] = value._cornerType;
array[startingIndex] = value._granularity;
return array;
};
const scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE);
const scratchOptions = {
polylinePositions: undefined,
shapePositions: undefined,
ellipsoid: scratchEllipsoid,
height: undefined,
cornerType: undefined,
granularity: undefined,
};
/**
* Retrieves an instance from a packed array.
*
* @param {number[]} array The packed array.
* @param {number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {PolylineVolumeOutlineGeometry} [result] The object into which to store the result.
* @returns {PolylineVolumeOutlineGeometry} The modified result parameter or a new PolylineVolumeOutlineGeometry instance if one was not provided.
*/
PolylineVolumeOutlineGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
let i;
let length = array[startingIndex++];
const positions = new Array(length);
for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
positions[i] = Cartesian3.unpack(array, startingIndex);
}
length = array[startingIndex++];
const shape = new Array(length);
for (i = 0; i < length; ++i, startingIndex += Cartesian2.packedLength) {
shape[i] = Cartesian2.unpack(array, startingIndex);
}
const ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
startingIndex += Ellipsoid.packedLength;
const cornerType = array[startingIndex++];
const granularity = array[startingIndex];
if (!defined(result)) {
scratchOptions.polylinePositions = positions;
scratchOptions.shapePositions = shape;
scratchOptions.cornerType = cornerType;
scratchOptions.granularity = granularity;
return new PolylineVolumeOutlineGeometry(scratchOptions);
}
result._positions = positions;
result._shape = shape;
result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid);
result._cornerType = cornerType;
result._granularity = granularity;
return result;
};
const brScratch = new BoundingRectangle();
/**
* Computes the geometric representation of the outline of a polyline with a volume, including its vertices, indices, and a bounding sphere.
*
* @param {PolylineVolumeOutlineGeometry} polylineVolumeOutlineGeometry A description of the polyline volume outline.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
PolylineVolumeOutlineGeometry.createGeometry = function (
polylineVolumeOutlineGeometry,
) {
const positions = polylineVolumeOutlineGeometry._positions;
const cleanPositions = arrayRemoveDuplicates(
positions,
Cartesian3.equalsEpsilon,
);
let shape2D = polylineVolumeOutlineGeometry._shape;
shape2D = PolylineVolumeGeometryLibrary.removeDuplicatesFromShape(shape2D);
if (cleanPositions.length < 2 || shape2D.length < 3) {
return undefined;
}
if (
PolygonPipeline.computeWindingOrder2D(shape2D) === WindingOrder.CLOCKWISE
) {
shape2D.reverse();
}
const boundingRectangle = BoundingRectangle.fromPoints(shape2D, brScratch);
const computedPositions = PolylineVolumeGeometryLibrary.computePositions(
cleanPositions,
shape2D,
boundingRectangle,
polylineVolumeOutlineGeometry,
false,
);
return computeAttributes(computedPositions, shape2D);
};
export default PolylineVolumeOutlineGeometry;