@cesium/engine
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
651 lines (575 loc) • 21.8 kB
JavaScript
import BoundingSphere from "./BoundingSphere.js";
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import ComponentDatatype from "./ComponentDatatype.js";
import Frozen from "./Frozen.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import Ellipsoid from "./Ellipsoid.js";
import Geometry from "./Geometry.js";
import GeometryAttribute from "./GeometryAttribute.js";
import GeometryAttributes from "./GeometryAttributes.js";
import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js";
import IndexDatatype from "./IndexDatatype.js";
import CesiumMath from "./Math.js";
import PrimitiveType from "./PrimitiveType.js";
import VertexFormat from "./VertexFormat.js";
const scratchPosition = new Cartesian3();
const scratchNormal = new Cartesian3();
const scratchTangent = new Cartesian3();
const scratchBitangent = new Cartesian3();
const scratchNormalST = new Cartesian3();
const defaultRadii = new Cartesian3(1.0, 1.0, 1.0);
const cos = Math.cos;
const sin = Math.sin;
/**
* A description of an ellipsoid centered at the origin.
*
* @alias EllipsoidGeometry
* @constructor
*
* @param {object} [options] Object with the following properties:
* @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.
* @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.
* @param {number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
* @param {number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
* @param {number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.
* @param {number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.
* @param {number} [options.stackPartitions=64] The number of times to partition the ellipsoid into stacks.
* @param {number} [options.slicePartitions=64] The number of times to partition the ellipsoid into radial slices.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
*
* @exception {DeveloperError} options.slicePartitions cannot be less than three.
* @exception {DeveloperError} options.stackPartitions cannot be less than three.
*
* @see EllipsoidGeometry#createGeometry
*
* @example
* const ellipsoid = new Cesium.EllipsoidGeometry({
* vertexFormat : Cesium.VertexFormat.POSITION_ONLY,
* radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0)
* });
* const geometry = Cesium.EllipsoidGeometry.createGeometry(ellipsoid);
*/
function EllipsoidGeometry(options) {
options = options ?? Frozen.EMPTY_OBJECT;
const radii = options.radii ?? defaultRadii;
const innerRadii = options.innerRadii ?? radii;
const minimumClock = options.minimumClock ?? 0.0;
const maximumClock = options.maximumClock ?? CesiumMath.TWO_PI;
const minimumCone = options.minimumCone ?? 0.0;
const maximumCone = options.maximumCone ?? CesiumMath.PI;
const stackPartitions = Math.round(options.stackPartitions ?? 64);
const slicePartitions = Math.round(options.slicePartitions ?? 64);
const vertexFormat = options.vertexFormat ?? VertexFormat.DEFAULT;
//>>includeStart('debug', pragmas.debug);
if (slicePartitions < 3) {
throw new DeveloperError(
"options.slicePartitions cannot be less than three.",
);
}
if (stackPartitions < 3) {
throw new DeveloperError(
"options.stackPartitions cannot be less than three.",
);
}
//>>includeEnd('debug');
this._radii = Cartesian3.clone(radii);
this._innerRadii = Cartesian3.clone(innerRadii);
this._minimumClock = minimumClock;
this._maximumClock = maximumClock;
this._minimumCone = minimumCone;
this._maximumCone = maximumCone;
this._stackPartitions = stackPartitions;
this._slicePartitions = slicePartitions;
this._vertexFormat = VertexFormat.clone(vertexFormat);
this._offsetAttribute = options.offsetAttribute;
this._workerName = "createEllipsoidGeometry";
}
/**
* The number of elements used to pack the object into an array.
* @type {number}
*/
EllipsoidGeometry.packedLength =
2 * Cartesian3.packedLength + VertexFormat.packedLength + 7;
/**
* Stores the provided instance into the provided array.
*
* @param {EllipsoidGeometry} value The value to pack.
* @param {number[]} array The array to pack into.
* @param {number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {number[]} The array that was packed into
*/
EllipsoidGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError("value is required");
}
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
Cartesian3.pack(value._radii, array, startingIndex);
startingIndex += Cartesian3.packedLength;
Cartesian3.pack(value._innerRadii, array, startingIndex);
startingIndex += Cartesian3.packedLength;
VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.packedLength;
array[startingIndex++] = value._minimumClock;
array[startingIndex++] = value._maximumClock;
array[startingIndex++] = value._minimumCone;
array[startingIndex++] = value._maximumCone;
array[startingIndex++] = value._stackPartitions;
array[startingIndex++] = value._slicePartitions;
array[startingIndex] = value._offsetAttribute ?? -1;
return array;
};
const scratchRadii = new Cartesian3();
const scratchInnerRadii = new Cartesian3();
const scratchVertexFormat = new VertexFormat();
const scratchOptions = {
radii: scratchRadii,
innerRadii: scratchInnerRadii,
vertexFormat: scratchVertexFormat,
minimumClock: undefined,
maximumClock: undefined,
minimumCone: undefined,
maximumCone: undefined,
stackPartitions: undefined,
slicePartitions: undefined,
offsetAttribute: undefined,
};
/**
* Retrieves an instance from a packed array.
*
* @param {number[]} array The packed array.
* @param {number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {EllipsoidGeometry} [result] The object into which to store the result.
* @returns {EllipsoidGeometry} The modified result parameter or a new EllipsoidGeometry instance if one was not provided.
*/
EllipsoidGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
const radii = Cartesian3.unpack(array, startingIndex, scratchRadii);
startingIndex += Cartesian3.packedLength;
const innerRadii = Cartesian3.unpack(array, startingIndex, scratchInnerRadii);
startingIndex += Cartesian3.packedLength;
const vertexFormat = VertexFormat.unpack(
array,
startingIndex,
scratchVertexFormat,
);
startingIndex += VertexFormat.packedLength;
const minimumClock = array[startingIndex++];
const maximumClock = array[startingIndex++];
const minimumCone = array[startingIndex++];
const maximumCone = array[startingIndex++];
const stackPartitions = array[startingIndex++];
const slicePartitions = array[startingIndex++];
const offsetAttribute = array[startingIndex];
if (!defined(result)) {
scratchOptions.minimumClock = minimumClock;
scratchOptions.maximumClock = maximumClock;
scratchOptions.minimumCone = minimumCone;
scratchOptions.maximumCone = maximumCone;
scratchOptions.stackPartitions = stackPartitions;
scratchOptions.slicePartitions = slicePartitions;
scratchOptions.offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return new EllipsoidGeometry(scratchOptions);
}
result._radii = Cartesian3.clone(radii, result._radii);
result._innerRadii = Cartesian3.clone(innerRadii, result._innerRadii);
result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);
result._minimumClock = minimumClock;
result._maximumClock = maximumClock;
result._minimumCone = minimumCone;
result._maximumCone = maximumCone;
result._stackPartitions = stackPartitions;
result._slicePartitions = slicePartitions;
result._offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return result;
};
/**
* Computes the geometric representation of an ellipsoid, including its vertices, indices, and a bounding sphere.
*
* @param {EllipsoidGeometry} ellipsoidGeometry A description of the ellipsoid.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
EllipsoidGeometry.createGeometry = function (ellipsoidGeometry) {
const radii = ellipsoidGeometry._radii;
if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {
return;
}
const innerRadii = ellipsoidGeometry._innerRadii;
if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {
return;
}
const minimumClock = ellipsoidGeometry._minimumClock;
const maximumClock = ellipsoidGeometry._maximumClock;
const minimumCone = ellipsoidGeometry._minimumCone;
const maximumCone = ellipsoidGeometry._maximumCone;
const vertexFormat = ellipsoidGeometry._vertexFormat;
// Add an extra slice and stack so that the number of partitions is the
// number of surfaces rather than the number of joints
let slicePartitions = ellipsoidGeometry._slicePartitions + 1;
let stackPartitions = ellipsoidGeometry._stackPartitions + 1;
slicePartitions = Math.round(
(slicePartitions * Math.abs(maximumClock - minimumClock)) /
CesiumMath.TWO_PI,
);
stackPartitions = Math.round(
(stackPartitions * Math.abs(maximumCone - minimumCone)) / CesiumMath.PI,
);
if (slicePartitions < 2) {
slicePartitions = 2;
}
if (stackPartitions < 2) {
stackPartitions = 2;
}
let i;
let j;
let index = 0;
// Create arrays for theta and phi. Duplicate first and last angle to
// allow different normals at the intersections.
const phis = [minimumCone];
const thetas = [minimumClock];
for (i = 0; i < stackPartitions; i++) {
phis.push(
minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1),
);
}
phis.push(maximumCone);
for (j = 0; j < slicePartitions; j++) {
thetas.push(
minimumClock +
(j * (maximumClock - minimumClock)) / (slicePartitions - 1),
);
}
thetas.push(maximumClock);
const numPhis = phis.length;
const numThetas = thetas.length;
// Allow for extra indices if there is an inner surface and if we need
// to close the sides if the clock range is not a full circle
let extraIndices = 0;
let vertexMultiplier = 1.0;
const hasInnerSurface =
innerRadii.x !== radii.x ||
innerRadii.y !== radii.y ||
innerRadii.z !== radii.z;
let isTopOpen = false;
let isBotOpen = false;
let isClockOpen = false;
if (hasInnerSurface) {
vertexMultiplier = 2.0;
if (minimumCone > 0.0) {
isTopOpen = true;
extraIndices += slicePartitions - 1;
}
if (maximumCone < Math.PI) {
isBotOpen = true;
extraIndices += slicePartitions - 1;
}
if ((maximumClock - minimumClock) % CesiumMath.TWO_PI) {
isClockOpen = true;
extraIndices += (stackPartitions - 1) * 2 + 1;
} else {
extraIndices += 1;
}
}
const vertexCount = numThetas * numPhis * vertexMultiplier;
const positions = new Float64Array(vertexCount * 3);
const isInner = new Array(vertexCount).fill(false);
const negateNormal = new Array(vertexCount).fill(false);
// Multiply by 6 because there are two triangles per sector
const indexCount = slicePartitions * stackPartitions * vertexMultiplier;
const numIndices =
6 *
(indexCount +
extraIndices +
1 -
(slicePartitions + stackPartitions) * vertexMultiplier);
const indices = IndexDatatype.createTypedArray(indexCount, numIndices);
const normals = vertexFormat.normal
? new Float32Array(vertexCount * 3)
: undefined;
const tangents = vertexFormat.tangent
? new Float32Array(vertexCount * 3)
: undefined;
const bitangents = vertexFormat.bitangent
? new Float32Array(vertexCount * 3)
: undefined;
const st = vertexFormat.st ? new Float32Array(vertexCount * 2) : undefined;
// Calculate sin/cos phi
const sinPhi = new Array(numPhis);
const cosPhi = new Array(numPhis);
for (i = 0; i < numPhis; i++) {
sinPhi[i] = sin(phis[i]);
cosPhi[i] = cos(phis[i]);
}
// Calculate sin/cos theta
const sinTheta = new Array(numThetas);
const cosTheta = new Array(numThetas);
for (j = 0; j < numThetas; j++) {
cosTheta[j] = cos(thetas[j]);
sinTheta[j] = sin(thetas[j]);
}
// Create outer surface
for (i = 0; i < numPhis; i++) {
for (j = 0; j < numThetas; j++) {
positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
positions[index++] = radii.z * cosPhi[i];
}
}
// Create inner surface
let vertexIndex = vertexCount / 2.0;
if (hasInnerSurface) {
for (i = 0; i < numPhis; i++) {
for (j = 0; j < numThetas; j++) {
positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
positions[index++] = innerRadii.z * cosPhi[i];
// Keep track of which vertices are the inner and which ones
// need the normal to be negated
isInner[vertexIndex] = true;
if (i > 0 && i !== numPhis - 1 && j !== 0 && j !== numThetas - 1) {
negateNormal[vertexIndex] = true;
}
vertexIndex++;
}
}
}
// Create indices for outer surface
index = 0;
let topOffset;
let bottomOffset;
for (i = 1; i < numPhis - 2; i++) {
topOffset = i * numThetas;
bottomOffset = (i + 1) * numThetas;
for (j = 1; j < numThetas - 2; j++) {
indices[index++] = bottomOffset + j;
indices[index++] = bottomOffset + j + 1;
indices[index++] = topOffset + j + 1;
indices[index++] = bottomOffset + j;
indices[index++] = topOffset + j + 1;
indices[index++] = topOffset + j;
}
}
// Create indices for inner surface
if (hasInnerSurface) {
const offset = numPhis * numThetas;
for (i = 1; i < numPhis - 2; i++) {
topOffset = offset + i * numThetas;
bottomOffset = offset + (i + 1) * numThetas;
for (j = 1; j < numThetas - 2; j++) {
indices[index++] = bottomOffset + j;
indices[index++] = topOffset + j;
indices[index++] = topOffset + j + 1;
indices[index++] = bottomOffset + j;
indices[index++] = topOffset + j + 1;
indices[index++] = bottomOffset + j + 1;
}
}
}
let outerOffset;
let innerOffset;
if (hasInnerSurface) {
if (isTopOpen) {
// Connect the top of the inner surface to the top of the outer surface
innerOffset = numPhis * numThetas;
for (i = 1; i < numThetas - 2; i++) {
indices[index++] = i;
indices[index++] = i + 1;
indices[index++] = innerOffset + i + 1;
indices[index++] = i;
indices[index++] = innerOffset + i + 1;
indices[index++] = innerOffset + i;
}
}
if (isBotOpen) {
// Connect the bottom of the inner surface to the bottom of the outer surface
outerOffset = numPhis * numThetas - numThetas;
innerOffset = numPhis * numThetas * vertexMultiplier - numThetas;
for (i = 1; i < numThetas - 2; i++) {
indices[index++] = outerOffset + i + 1;
indices[index++] = outerOffset + i;
indices[index++] = innerOffset + i;
indices[index++] = outerOffset + i + 1;
indices[index++] = innerOffset + i;
indices[index++] = innerOffset + i + 1;
}
}
}
// Connect the edges if clock is not closed
if (isClockOpen) {
for (i = 1; i < numPhis - 2; i++) {
innerOffset = numThetas * numPhis + numThetas * i;
outerOffset = numThetas * i;
indices[index++] = innerOffset;
indices[index++] = outerOffset + numThetas;
indices[index++] = outerOffset;
indices[index++] = innerOffset;
indices[index++] = innerOffset + numThetas;
indices[index++] = outerOffset + numThetas;
}
for (i = 1; i < numPhis - 2; i++) {
innerOffset = numThetas * numPhis + numThetas * (i + 1) - 1;
outerOffset = numThetas * (i + 1) - 1;
indices[index++] = outerOffset + numThetas;
indices[index++] = innerOffset;
indices[index++] = outerOffset;
indices[index++] = outerOffset + numThetas;
indices[index++] = innerOffset + numThetas;
indices[index++] = innerOffset;
}
}
const attributes = new GeometryAttributes();
if (vertexFormat.position) {
attributes.position = new GeometryAttribute({
componentDatatype: ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: positions,
});
}
let stIndex = 0;
let normalIndex = 0;
let tangentIndex = 0;
let bitangentIndex = 0;
const vertexCountHalf = vertexCount / 2.0;
let ellipsoid;
const ellipsoidOuter = Ellipsoid.fromCartesian3(radii);
const ellipsoidInner = Ellipsoid.fromCartesian3(innerRadii);
if (
vertexFormat.st ||
vertexFormat.normal ||
vertexFormat.tangent ||
vertexFormat.bitangent
) {
for (i = 0; i < vertexCount; i++) {
ellipsoid = isInner[i] ? ellipsoidInner : ellipsoidOuter;
const position = Cartesian3.fromArray(positions, i * 3, scratchPosition);
const normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);
if (negateNormal[i]) {
Cartesian3.negate(normal, normal);
}
if (vertexFormat.st) {
const normalST = Cartesian2.negate(normal, scratchNormalST);
st[stIndex++] =
Math.atan2(normalST.y, normalST.x) / CesiumMath.TWO_PI + 0.5;
st[stIndex++] = Math.asin(normal.z) / Math.PI + 0.5;
}
if (vertexFormat.normal) {
normals[normalIndex++] = normal.x;
normals[normalIndex++] = normal.y;
normals[normalIndex++] = normal.z;
}
if (vertexFormat.tangent || vertexFormat.bitangent) {
const tangent = scratchTangent;
// Use UNIT_X for the poles
let tangetOffset = 0;
let unit;
if (isInner[i]) {
tangetOffset = vertexCountHalf;
}
if (
!isTopOpen &&
i >= tangetOffset &&
i < tangetOffset + numThetas * 2
) {
unit = Cartesian3.UNIT_X;
} else {
unit = Cartesian3.UNIT_Z;
}
Cartesian3.cross(unit, normal, tangent);
Cartesian3.normalize(tangent, tangent);
if (vertexFormat.tangent) {
tangents[tangentIndex++] = tangent.x;
tangents[tangentIndex++] = tangent.y;
tangents[tangentIndex++] = tangent.z;
}
if (vertexFormat.bitangent) {
const bitangent = Cartesian3.cross(normal, tangent, scratchBitangent);
Cartesian3.normalize(bitangent, bitangent);
bitangents[bitangentIndex++] = bitangent.x;
bitangents[bitangentIndex++] = bitangent.y;
bitangents[bitangentIndex++] = bitangent.z;
}
}
}
if (vertexFormat.st) {
attributes.st = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: st,
});
}
if (vertexFormat.normal) {
attributes.normal = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: normals,
});
}
if (vertexFormat.tangent) {
attributes.tangent = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: tangents,
});
}
if (vertexFormat.bitangent) {
attributes.bitangent = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: bitangents,
});
}
}
if (defined(ellipsoidGeometry._offsetAttribute)) {
const length = positions.length;
const offsetValue =
ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.NONE
? 0
: 1;
const applyOffset = new Uint8Array(length / 3).fill(offsetValue);
attributes.applyOffset = new GeometryAttribute({
componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset,
});
}
return new Geometry({
attributes: attributes,
indices: indices,
primitiveType: PrimitiveType.TRIANGLES,
boundingSphere: BoundingSphere.fromEllipsoid(ellipsoidOuter),
offsetAttribute: ellipsoidGeometry._offsetAttribute,
});
};
let unitEllipsoidGeometry;
/**
* Returns the geometric representation of a unit ellipsoid, including its vertices, indices, and a bounding sphere.
* @returns {Geometry} The computed vertices and indices.
*
* @private
*/
EllipsoidGeometry.getUnitEllipsoid = function () {
if (!defined(unitEllipsoidGeometry)) {
unitEllipsoidGeometry = EllipsoidGeometry.createGeometry(
new EllipsoidGeometry({
radii: new Cartesian3(1.0, 1.0, 1.0),
vertexFormat: VertexFormat.POSITION_ONLY,
}),
);
}
return unitEllipsoidGeometry;
};
export default EllipsoidGeometry;