@cesium/engine
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
502 lines (470 loc) • 14.4 kB
JavaScript
import Cartesian3 from "./Cartesian3.js";
import CornerType from "./CornerType.js";
import defined from "./defined.js";
import CesiumMath from "./Math.js";
import Matrix3 from "./Matrix3.js";
import PolylinePipeline from "./PolylinePipeline.js";
import PolylineVolumeGeometryLibrary from "./PolylineVolumeGeometryLibrary.js";
import Quaternion from "./Quaternion.js";
/**
* @private
*/
const CorridorGeometryLibrary = {};
const scratch1 = new Cartesian3();
const scratch2 = new Cartesian3();
const scratch3 = new Cartesian3();
const scratch4 = new Cartesian3();
const scaleArray2 = [new Cartesian3(), new Cartesian3()];
const cartesian1 = new Cartesian3();
const cartesian2 = new Cartesian3();
const cartesian3 = new Cartesian3();
const cartesian4 = new Cartesian3();
const cartesian5 = new Cartesian3();
const cartesian6 = new Cartesian3();
const cartesian7 = new Cartesian3();
const cartesian8 = new Cartesian3();
const cartesian9 = new Cartesian3();
const cartesian10 = new Cartesian3();
const quaterion = new Quaternion();
const rotMatrix = new Matrix3();
function computeRoundCorner(
cornerPoint,
startPoint,
endPoint,
cornerType,
leftIsOutside,
) {
const angle = Cartesian3.angleBetween(
Cartesian3.subtract(startPoint, cornerPoint, scratch1),
Cartesian3.subtract(endPoint, cornerPoint, scratch2),
);
const granularity =
cornerType === CornerType.BEVELED
? 1
: Math.ceil(angle / CesiumMath.toRadians(5)) + 1;
const size = granularity * 3;
const array = new Array(size);
array[size - 3] = endPoint.x;
array[size - 2] = endPoint.y;
array[size - 1] = endPoint.z;
let m;
if (leftIsOutside) {
m = Matrix3.fromQuaternion(
Quaternion.fromAxisAngle(
Cartesian3.negate(cornerPoint, scratch1),
angle / granularity,
quaterion,
),
rotMatrix,
);
} else {
m = Matrix3.fromQuaternion(
Quaternion.fromAxisAngle(cornerPoint, angle / granularity, quaterion),
rotMatrix,
);
}
let index = 0;
startPoint = Cartesian3.clone(startPoint, scratch1);
for (let i = 0; i < granularity; i++) {
startPoint = Matrix3.multiplyByVector(m, startPoint, startPoint);
array[index++] = startPoint.x;
array[index++] = startPoint.y;
array[index++] = startPoint.z;
}
return array;
}
function addEndCaps(calculatedPositions) {
let cornerPoint = cartesian1;
let startPoint = cartesian2;
let endPoint = cartesian3;
let leftEdge = calculatedPositions[1];
startPoint = Cartesian3.fromArray(
calculatedPositions[1],
leftEdge.length - 3,
startPoint,
);
endPoint = Cartesian3.fromArray(calculatedPositions[0], 0, endPoint);
cornerPoint = Cartesian3.midpoint(startPoint, endPoint, cornerPoint);
const firstEndCap = computeRoundCorner(
cornerPoint,
startPoint,
endPoint,
CornerType.ROUNDED,
false,
);
const length = calculatedPositions.length - 1;
const rightEdge = calculatedPositions[length - 1];
leftEdge = calculatedPositions[length];
startPoint = Cartesian3.fromArray(
rightEdge,
rightEdge.length - 3,
startPoint,
);
endPoint = Cartesian3.fromArray(leftEdge, 0, endPoint);
cornerPoint = Cartesian3.midpoint(startPoint, endPoint, cornerPoint);
const lastEndCap = computeRoundCorner(
cornerPoint,
startPoint,
endPoint,
CornerType.ROUNDED,
false,
);
return [firstEndCap, lastEndCap];
}
function computeMiteredCorner(
position,
leftCornerDirection,
lastPoint,
leftIsOutside,
) {
let cornerPoint = scratch1;
if (leftIsOutside) {
cornerPoint = Cartesian3.add(position, leftCornerDirection, cornerPoint);
} else {
leftCornerDirection = Cartesian3.negate(
leftCornerDirection,
leftCornerDirection,
);
cornerPoint = Cartesian3.add(position, leftCornerDirection, cornerPoint);
}
return [
cornerPoint.x,
cornerPoint.y,
cornerPoint.z,
lastPoint.x,
lastPoint.y,
lastPoint.z,
];
}
function addShiftedPositions(positions, left, scalar, calculatedPositions) {
const rightPositions = new Array(positions.length);
const leftPositions = new Array(positions.length);
const scaledLeft = Cartesian3.multiplyByScalar(left, scalar, scratch1);
const scaledRight = Cartesian3.negate(scaledLeft, scratch2);
let rightIndex = 0;
let leftIndex = positions.length - 1;
for (let i = 0; i < positions.length; i += 3) {
const pos = Cartesian3.fromArray(positions, i, scratch3);
const rightPos = Cartesian3.add(pos, scaledRight, scratch4);
rightPositions[rightIndex++] = rightPos.x;
rightPositions[rightIndex++] = rightPos.y;
rightPositions[rightIndex++] = rightPos.z;
const leftPos = Cartesian3.add(pos, scaledLeft, scratch4);
leftPositions[leftIndex--] = leftPos.z;
leftPositions[leftIndex--] = leftPos.y;
leftPositions[leftIndex--] = leftPos.x;
}
calculatedPositions.push(rightPositions, leftPositions);
return calculatedPositions;
}
/**
* @private
*/
CorridorGeometryLibrary.addAttribute = function (
attribute,
value,
front,
back,
) {
const x = value.x;
const y = value.y;
const z = value.z;
if (defined(front)) {
attribute[front] = x;
attribute[front + 1] = y;
attribute[front + 2] = z;
}
if (defined(back)) {
attribute[back] = z;
attribute[back - 1] = y;
attribute[back - 2] = x;
}
};
const scratchForwardProjection = new Cartesian3();
const scratchBackwardProjection = new Cartesian3();
/**
* @private
*/
CorridorGeometryLibrary.computePositions = function (params) {
const granularity = params.granularity;
const positions = params.positions;
const ellipsoid = params.ellipsoid;
const width = params.width / 2;
const cornerType = params.cornerType;
const saveAttributes = params.saveAttributes;
let normal = cartesian1;
let forward = cartesian2;
let backward = cartesian3;
let left = cartesian4;
let cornerDirection = cartesian5;
let startPoint = cartesian6;
let previousPos = cartesian7;
let rightPos = cartesian8;
let leftPos = cartesian9;
let center = cartesian10;
let calculatedPositions = [];
const calculatedLefts = saveAttributes ? [] : undefined;
const calculatedNormals = saveAttributes ? [] : undefined;
let position = positions[0]; //add first point
let nextPosition = positions[1];
forward = Cartesian3.normalize(
Cartesian3.subtract(nextPosition, position, forward),
forward,
);
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
left = Cartesian3.normalize(Cartesian3.cross(normal, forward, left), left);
if (saveAttributes) {
calculatedLefts.push(left.x, left.y, left.z);
calculatedNormals.push(normal.x, normal.y, normal.z);
}
previousPos = Cartesian3.clone(position, previousPos);
position = nextPosition;
backward = Cartesian3.negate(forward, backward);
let subdividedPositions;
const corners = [];
let i;
const length = positions.length;
for (i = 1; i < length - 1; i++) {
// add middle points and corners
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
nextPosition = positions[i + 1];
forward = Cartesian3.normalize(
Cartesian3.subtract(nextPosition, position, forward),
forward,
);
const forwardProjection = Cartesian3.multiplyByScalar(
normal,
Cartesian3.dot(forward, normal),
scratchForwardProjection,
);
Cartesian3.subtract(forward, forwardProjection, forwardProjection);
Cartesian3.normalize(forwardProjection, forwardProjection);
const backwardProjection = Cartesian3.multiplyByScalar(
normal,
Cartesian3.dot(backward, normal),
scratchBackwardProjection,
);
Cartesian3.subtract(backward, backwardProjection, backwardProjection);
Cartesian3.normalize(backwardProjection, backwardProjection);
const doCorner = !CesiumMath.equalsEpsilon(
Math.abs(Cartesian3.dot(forwardProjection, backwardProjection)),
1.0,
CesiumMath.EPSILON7,
);
if (doCorner) {
cornerDirection = Cartesian3.normalize(
Cartesian3.add(forward, backward, cornerDirection),
cornerDirection,
);
cornerDirection = Cartesian3.cross(
cornerDirection,
normal,
cornerDirection,
);
cornerDirection = Cartesian3.cross(
normal,
cornerDirection,
cornerDirection,
);
cornerDirection = Cartesian3.normalize(cornerDirection, cornerDirection);
const scalar =
width /
Math.max(
0.25,
Cartesian3.magnitude(
Cartesian3.cross(cornerDirection, backward, scratch1),
),
);
const leftIsOutside = PolylineVolumeGeometryLibrary.angleIsGreaterThanPi(
forward,
backward,
position,
ellipsoid,
);
cornerDirection = Cartesian3.multiplyByScalar(
cornerDirection,
scalar,
cornerDirection,
);
if (leftIsOutside) {
rightPos = Cartesian3.add(position, cornerDirection, rightPos);
center = Cartesian3.add(
rightPos,
Cartesian3.multiplyByScalar(left, width, center),
center,
);
leftPos = Cartesian3.add(
rightPos,
Cartesian3.multiplyByScalar(left, width * 2, leftPos),
leftPos,
);
scaleArray2[0] = Cartesian3.clone(previousPos, scaleArray2[0]);
scaleArray2[1] = Cartesian3.clone(center, scaleArray2[1]);
subdividedPositions = PolylinePipeline.generateArc({
positions: scaleArray2,
granularity: granularity,
ellipsoid: ellipsoid,
});
calculatedPositions = addShiftedPositions(
subdividedPositions,
left,
width,
calculatedPositions,
);
if (saveAttributes) {
calculatedLefts.push(left.x, left.y, left.z);
calculatedNormals.push(normal.x, normal.y, normal.z);
}
startPoint = Cartesian3.clone(leftPos, startPoint);
left = Cartesian3.normalize(
Cartesian3.cross(normal, forward, left),
left,
);
leftPos = Cartesian3.add(
rightPos,
Cartesian3.multiplyByScalar(left, width * 2, leftPos),
leftPos,
);
previousPos = Cartesian3.add(
rightPos,
Cartesian3.multiplyByScalar(left, width, previousPos),
previousPos,
);
if (
cornerType === CornerType.ROUNDED ||
cornerType === CornerType.BEVELED
) {
corners.push({
leftPositions: computeRoundCorner(
rightPos,
startPoint,
leftPos,
cornerType,
leftIsOutside,
),
});
} else {
corners.push({
leftPositions: computeMiteredCorner(
position,
Cartesian3.negate(cornerDirection, cornerDirection),
leftPos,
leftIsOutside,
),
});
}
} else {
leftPos = Cartesian3.add(position, cornerDirection, leftPos);
center = Cartesian3.add(
leftPos,
Cartesian3.negate(
Cartesian3.multiplyByScalar(left, width, center),
center,
),
center,
);
rightPos = Cartesian3.add(
leftPos,
Cartesian3.negate(
Cartesian3.multiplyByScalar(left, width * 2, rightPos),
rightPos,
),
rightPos,
);
scaleArray2[0] = Cartesian3.clone(previousPos, scaleArray2[0]);
scaleArray2[1] = Cartesian3.clone(center, scaleArray2[1]);
subdividedPositions = PolylinePipeline.generateArc({
positions: scaleArray2,
granularity: granularity,
ellipsoid: ellipsoid,
});
calculatedPositions = addShiftedPositions(
subdividedPositions,
left,
width,
calculatedPositions,
);
if (saveAttributes) {
calculatedLefts.push(left.x, left.y, left.z);
calculatedNormals.push(normal.x, normal.y, normal.z);
}
startPoint = Cartesian3.clone(rightPos, startPoint);
left = Cartesian3.normalize(
Cartesian3.cross(normal, forward, left),
left,
);
rightPos = Cartesian3.add(
leftPos,
Cartesian3.negate(
Cartesian3.multiplyByScalar(left, width * 2, rightPos),
rightPos,
),
rightPos,
);
previousPos = Cartesian3.add(
leftPos,
Cartesian3.negate(
Cartesian3.multiplyByScalar(left, width, previousPos),
previousPos,
),
previousPos,
);
if (
cornerType === CornerType.ROUNDED ||
cornerType === CornerType.BEVELED
) {
corners.push({
rightPositions: computeRoundCorner(
leftPos,
startPoint,
rightPos,
cornerType,
leftIsOutside,
),
});
} else {
corners.push({
rightPositions: computeMiteredCorner(
position,
cornerDirection,
rightPos,
leftIsOutside,
),
});
}
}
backward = Cartesian3.negate(forward, backward);
}
position = nextPosition;
}
normal = ellipsoid.geodeticSurfaceNormal(position, normal);
scaleArray2[0] = Cartesian3.clone(previousPos, scaleArray2[0]);
scaleArray2[1] = Cartesian3.clone(position, scaleArray2[1]);
subdividedPositions = PolylinePipeline.generateArc({
positions: scaleArray2,
granularity: granularity,
ellipsoid: ellipsoid,
});
calculatedPositions = addShiftedPositions(
subdividedPositions,
left,
width,
calculatedPositions,
);
if (saveAttributes) {
calculatedLefts.push(left.x, left.y, left.z);
calculatedNormals.push(normal.x, normal.y, normal.z);
}
let endPositions;
if (cornerType === CornerType.ROUNDED) {
endPositions = addEndCaps(calculatedPositions);
}
return {
positions: calculatedPositions,
corners: corners,
lefts: calculatedLefts,
normals: calculatedNormals,
endPositions: endPositions,
};
};
export default CorridorGeometryLibrary;