@cesium/engine
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
463 lines (408 loc) • 15.3 kB
JavaScript
import BoundingRectangle from "../Core/BoundingRectangle.js";
import Cartesian3 from "../Core/Cartesian3.js";
import CullingVolume from "../Core/CullingVolume.js";
import defined from "../Core/defined.js";
import getTimestamp from "../Core/getTimestamp.js";
import Interval from "../Core/Interval.js";
import CesiumMath from "../Core/Math.js";
import Matrix4 from "../Core/Matrix4.js";
import ClearCommand from "../Renderer/ClearCommand.js";
import Pass from "../Renderer/Pass.js";
import PassState from "../Renderer/PassState.js";
import Camera from "./Camera.js";
import FrustumCommands from "./FrustumCommands.js";
import GlobeDepth from "./GlobeDepth.js";
import GlobeTranslucencyFramebuffer from "./GlobeTranslucencyFramebuffer.js";
import OIT from "./OIT.js";
import PickDepthFramebuffer from "./PickDepthFramebuffer.js";
import PickFramebuffer from "./PickFramebuffer.js";
import SceneFramebuffer from "./SceneFramebuffer.js";
import SceneMode from "./SceneMode.js";
import ShadowMap from "./ShadowMap.js";
import TranslucentTileClassification from "./TranslucentTileClassification.js";
function CommandExtent() {
this.command = undefined;
this.near = undefined;
this.far = undefined;
}
/**
* @alias View
* @constructor
*
* @param {Scene} scene
* @param {Camera} camera
* @param {BoundingRectangle} viewport
*
* @private
*/
function View(scene, camera, viewport) {
const context = scene.context;
let globeDepth;
if (context.depthTexture) {
globeDepth = new GlobeDepth();
}
let oit;
if (scene._useOIT && context.depthTexture) {
oit = new OIT(context);
}
const passState = new PassState(context);
passState.viewport = BoundingRectangle.clone(viewport);
this.camera = camera;
this._cameraClone = Camera.clone(camera);
this._cameraStartFired = false;
this._cameraMovedTime = undefined;
this.viewport = viewport;
this.passState = passState;
this.pickFramebuffer = new PickFramebuffer(context);
this.pickDepthFramebuffer = new PickDepthFramebuffer();
this.sceneFramebuffer = new SceneFramebuffer();
this.globeDepth = globeDepth;
this.globeTranslucencyFramebuffer = new GlobeTranslucencyFramebuffer();
this.oit = oit;
this.translucentTileClassification = new TranslucentTileClassification(
context,
);
/**
* @type {PickDepth[]}
*/
this.pickDepths = [];
this.frustumCommandsList = [];
this.debugFrustumStatistics = undefined;
// Array of all commands that get rendered into frustums along with their near / far values.
// Acts similar to a ManagedArray.
this._commandExtents = [];
}
const scratchPosition0 = new Cartesian3();
const scratchPosition1 = new Cartesian3();
/**
* Check if two cameras have the same view.
*
* @param {Camera} camera0 The first camera for comparison.
* @param {Camera} camera1 The second camera for comparison.
* @param {number} epsilon The epsilon tolerance to use for equality testing.
* @returns {boolean} <code>true</code> if the cameras are equal.
*
* @private
*/
function cameraEqual(camera0, camera1, epsilon) {
const maximumPositionComponent = Math.max(
Cartesian3.maximumComponent(
Cartesian3.abs(camera0.position, scratchPosition0),
),
Cartesian3.maximumComponent(
Cartesian3.abs(camera1.position, scratchPosition1),
),
);
const scalar = 1 / Math.max(1, maximumPositionComponent);
Cartesian3.multiplyByScalar(camera0.position, scalar, scratchPosition0);
Cartesian3.multiplyByScalar(camera1.position, scalar, scratchPosition1);
return (
Cartesian3.equalsEpsilon(scratchPosition0, scratchPosition1, epsilon) &&
Cartesian3.equalsEpsilon(camera0.direction, camera1.direction, epsilon) &&
Cartesian3.equalsEpsilon(camera0.up, camera1.up, epsilon) &&
Cartesian3.equalsEpsilon(camera0.right, camera1.right, epsilon) &&
Matrix4.equalsEpsilon(camera0.transform, camera1.transform, epsilon) &&
camera0.frustum.equalsEpsilon(camera1.frustum, epsilon)
);
}
/**
* Check if the camera position or direction has changed.
*
* @param {Scene} scene
* @returns {boolean} <code>true</code> if the camera has been updated
*
* @private
*/
View.prototype.checkForCameraUpdates = function (scene) {
const camera = this.camera;
const cameraClone = this._cameraClone;
if (!cameraEqual(camera, cameraClone, CesiumMath.EPSILON15)) {
if (!this._cameraStartFired) {
camera.moveStart.raiseEvent();
this._cameraStartFired = true;
}
this._cameraMovedTime = getTimestamp();
Camera.clone(camera, cameraClone);
return true;
}
if (
this._cameraStartFired &&
getTimestamp() - this._cameraMovedTime > scene.cameraEventWaitTime
) {
camera.moveEnd.raiseEvent();
this._cameraStartFired = false;
}
return false;
};
/**
* Split the depth range of the scene into multiple frustums, and initialize
* a list of {@link FrustumCommands} with the distances to the near and far
* planes for each frustum.
*
* @param {View} view The view to which the frustum commands list is attached.
* @param {Scene} scene The scene to be rendered.
* @param {number} near The distance to the nearest object in the scene.
* @param {number} far The distance to the farthest object in the scene.
*
* @private
*/
function updateFrustums(view, scene, near, far) {
const { frameState } = scene;
const { camera, useLogDepth } = frameState;
const farToNearRatio = useLogDepth
? scene.logarithmicDepthFarToNearRatio
: scene.farToNearRatio;
const is2D = scene.mode === SceneMode.SCENE2D;
const nearToFarDistance2D = scene.nearToFarDistance2D;
// Extend the far plane slightly further to prevent geometry clipping against the far plane.
far *= 1.0 + CesiumMath.EPSILON2;
// The computed near plane must be between the user defined near and far planes.
// The computed far plane must between the user defined far and computed near.
// This will handle the case where the computed near plane is further than the user defined far plane.
near = Math.min(Math.max(near, camera.frustum.near), camera.frustum.far);
far = Math.max(Math.min(far, camera.frustum.far), near);
let numFrustums;
if (is2D) {
// The multifrustum for 2D is uniformly distributed. To avoid z-fighting in 2D,
// the camera is moved to just before the frustum and the frustum depth is scaled
// to be in [1.0, nearToFarDistance2D].
far = Math.min(far, camera.position.z + scene.nearToFarDistance2D);
near = Math.min(near, far);
numFrustums = Math.ceil(
Math.max(1.0, far - near) / scene.nearToFarDistance2D,
);
} else {
// The multifrustum for 3D/CV is non-uniformly distributed.
numFrustums = Math.ceil(Math.log(far / near) / Math.log(farToNearRatio));
}
const { frustumCommandsList } = view;
frustumCommandsList.length = numFrustums;
for (let m = 0; m < numFrustums; ++m) {
let curNear;
let curFar;
if (is2D) {
curNear = Math.min(
far - nearToFarDistance2D,
near + m * nearToFarDistance2D,
);
curFar = Math.min(far, curNear + nearToFarDistance2D);
} else {
curNear = Math.max(near, Math.pow(farToNearRatio, m) * near);
curFar = Math.min(far, farToNearRatio * curNear);
}
let frustumCommands = frustumCommandsList[m];
if (!defined(frustumCommands)) {
frustumCommands = frustumCommandsList[m] = new FrustumCommands(
curNear,
curFar,
);
} else {
frustumCommands.near = curNear;
frustumCommands.far = curFar;
}
}
}
/**
* Insert a command into the appropriate {@link FrustumCommands} based on the
* range of depths covered by its bounding volume.
*
* @param {View} view
* @param {Scene} scene
* @param {CommandExtent} commandExtent
*
* @private
*/
function insertIntoBin(view, scene, commandExtent) {
const { command, near, far } = commandExtent;
if (scene.debugShowFrustums) {
command.debugOverlappingFrustums = 0;
}
const { frustumCommandsList } = view;
for (let i = 0; i < frustumCommandsList.length; ++i) {
const frustumCommands = frustumCommandsList[i];
if (near > frustumCommands.far) {
continue;
}
if (far < frustumCommands.near) {
break;
}
const pass = command.pass;
const index = frustumCommands.indices[pass]++;
frustumCommands.commands[pass][index] = command;
if (scene.debugShowFrustums) {
command.debugOverlappingFrustums |= 1 << i;
}
if (command.executeInClosestFrustum) {
break;
}
}
if (scene.debugShowFrustums) {
const { debugFrustumStatistics } = view;
const { debugOverlappingFrustums } = command;
const cf = debugFrustumStatistics.commandsInFrustums;
cf[debugOverlappingFrustums] = defined(cf[debugOverlappingFrustums])
? cf[debugOverlappingFrustums] + 1
: 1;
++debugFrustumStatistics.totalCommands;
}
scene.updateDerivedCommands(command);
}
const scratchCullingVolume = new CullingVolume();
const scratchNearFarInterval = new Interval();
View.prototype.createPotentiallyVisibleSet = function (scene) {
const { frameState } = scene;
const { camera, commandList, shadowState } = frameState;
const { positionWC, directionWC, frustum } = camera;
const computeList = scene._computeCommandList;
const overlayList = scene._overlayCommandList;
if (scene.debugShowFrustums) {
this.debugFrustumStatistics = {
totalCommands: 0,
commandsInFrustums: {},
};
}
const frustumCommandsList = this.frustumCommandsList;
for (let n = 0; n < frustumCommandsList.length; ++n) {
for (let p = 0; p < Pass.NUMBER_OF_PASSES; ++p) {
frustumCommandsList[n].indices[p] = 0;
}
}
computeList.length = 0;
overlayList.length = 0;
const commandExtents = this._commandExtents;
const commandExtentCapacity = commandExtents.length;
let commandExtentCount = 0;
let near = +Number.MAX_VALUE;
let far = -Number.MAX_VALUE;
const { shadowsEnabled } = shadowState;
let shadowNear = +Number.MAX_VALUE;
let shadowFar = -Number.MAX_VALUE;
let shadowClosestObjectSize = Number.MAX_VALUE;
const occluder =
frameState.mode === SceneMode.SCENE3D ? frameState.occluder : undefined;
// get user culling volume minus the far plane.
let { cullingVolume } = frameState;
const planes = scratchCullingVolume.planes;
for (let k = 0; k < 5; ++k) {
planes[k] = cullingVolume.planes[k];
}
cullingVolume = scratchCullingVolume;
for (let i = 0; i < commandList.length; ++i) {
const command = commandList[i];
const { pass, boundingVolume } = command;
if (pass === Pass.COMPUTE) {
computeList.push(command);
} else if (pass === Pass.OVERLAY) {
overlayList.push(command);
} else {
let commandNear;
let commandFar;
if (defined(boundingVolume)) {
if (!scene.isVisible(cullingVolume, command, occluder)) {
continue;
}
const nearFarInterval = boundingVolume.computePlaneDistances(
positionWC,
directionWC,
scratchNearFarInterval,
);
commandNear = nearFarInterval.start;
commandFar = nearFarInterval.stop;
near = Math.min(near, commandNear);
far = Math.max(far, commandFar);
// Compute a tight near and far plane for commands that receive shadows. This helps compute
// good splits for cascaded shadow maps. Ignore commands that exceed the maximum distance.
// When moving the camera low LOD globe tiles begin to load, whose bounding volumes
// throw off the near/far fitting for the shadow map. Only update for globe tiles that the
// camera isn't inside.
if (
shadowsEnabled &&
command.receiveShadows &&
commandNear < ShadowMap.MAXIMUM_DISTANCE &&
!(pass === Pass.GLOBE && commandNear < -100.0 && commandFar > 100.0)
) {
// Get the smallest bounding volume the camera is near. This is used to place more shadow detail near the object.
const size = commandFar - commandNear;
if (pass !== Pass.GLOBE && commandNear < 100.0) {
shadowClosestObjectSize = Math.min(shadowClosestObjectSize, size);
}
shadowNear = Math.min(shadowNear, commandNear);
shadowFar = Math.max(shadowFar, commandFar);
}
} else if (command instanceof ClearCommand) {
// Clear commands don't need a bounding volume - just add the clear to all frustums.
commandNear = frustum.near;
commandFar = frustum.far;
} else {
// If command has no bounding volume we need to use the camera's
// worst-case near and far planes to avoid clipping something important.
commandNear = frustum.near;
commandFar = frustum.far;
near = Math.min(near, commandNear);
far = Math.max(far, commandFar);
}
let extent = commandExtents[commandExtentCount];
if (!defined(extent)) {
extent = commandExtents[commandExtentCount] = new CommandExtent();
}
extent.command = command;
extent.near = commandNear;
extent.far = commandFar;
commandExtentCount++;
}
}
if (shadowsEnabled) {
shadowNear = Math.min(Math.max(shadowNear, frustum.near), frustum.far);
shadowFar = Math.max(Math.min(shadowFar, frustum.far), shadowNear);
// Use the computed near and far for shadows
shadowState.nearPlane = shadowNear;
shadowState.farPlane = shadowFar;
shadowState.closestObjectSize = shadowClosestObjectSize;
}
updateFrustums(this, scene, near, far);
for (let c = 0; c < commandExtentCount; c++) {
insertIntoBin(this, scene, commandExtents[c]);
}
// Dereference old commands
if (commandExtentCount < commandExtentCapacity) {
for (let c = commandExtentCount; c < commandExtentCapacity; c++) {
const commandExtent = commandExtents[c];
if (!defined(commandExtent.command)) {
// If the command is undefined, it's assumed that all
// subsequent commmands were set to undefined as well,
// so no need to loop over them all
break;
}
commandExtent.command = undefined;
}
}
const numFrustums = frustumCommandsList.length;
const { frustumSplits } = frameState;
frustumSplits.length = numFrustums + 1;
for (let j = 0; j < numFrustums; ++j) {
frustumSplits[j] = frustumCommandsList[j].near;
if (j === numFrustums - 1) {
frustumSplits[j + 1] = frustumCommandsList[j].far;
}
}
};
View.prototype.destroy = function () {
this.pickFramebuffer = this.pickFramebuffer && this.pickFramebuffer.destroy();
this.pickDepthFramebuffer =
this.pickDepthFramebuffer && this.pickDepthFramebuffer.destroy();
this.sceneFramebuffer =
this.sceneFramebuffer && this.sceneFramebuffer.destroy();
this.globeDepth = this.globeDepth && this.globeDepth.destroy();
this.oit = this.oit && this.oit.destroy();
this.translucentTileClassification =
this.translucentTileClassification &&
this.translucentTileClassification.destroy();
this.globeTranslucencyFramebuffer =
this.globeTranslucencyFramebuffer &&
this.globeTranslucencyFramebuffer.destroy();
const pickDepths = this.pickDepths;
for (let i = 0; i < pickDepths.length; ++i) {
pickDepths[i].destroy();
}
};
export default View;