@cesium/engine
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
1,583 lines (1,429 loc) • 60.5 kB
JavaScript
import BoundingRectangle from "../Core/BoundingRectangle.js";
import BoundingSphere from "../Core/BoundingSphere.js";
import BoxOutlineGeometry from "../Core/BoxOutlineGeometry.js";
import Cartesian2 from "../Core/Cartesian2.js";
import Cartesian3 from "../Core/Cartesian3.js";
import Cartesian4 from "../Core/Cartesian4.js";
import Cartographic from "../Core/Cartographic.js";
import clone from "../Core/clone.js";
import Color from "../Core/Color.js";
import ColorGeometryInstanceAttribute from "../Core/ColorGeometryInstanceAttribute.js";
import combine from "../Core/combine.js";
import CullingVolume from "../Core/CullingVolume.js";
import Frozen from "../Core/Frozen.js";
import defined from "../Core/defined.js";
import destroyObject from "../Core/destroyObject.js";
import DeveloperError from "../Core/DeveloperError.js";
import FeatureDetection from "../Core/FeatureDetection.js";
import GeometryInstance from "../Core/GeometryInstance.js";
import Intersect from "../Core/Intersect.js";
import CesiumMath from "../Core/Math.js";
import Matrix4 from "../Core/Matrix4.js";
import OrthographicOffCenterFrustum from "../Core/OrthographicOffCenterFrustum.js";
import PerspectiveFrustum from "../Core/PerspectiveFrustum.js";
import PixelFormat from "../Core/PixelFormat.js";
import Quaternion from "../Core/Quaternion.js";
import SphereOutlineGeometry from "../Core/SphereOutlineGeometry.js";
import WebGLConstants from "../Core/WebGLConstants.js";
import ClearCommand from "../Renderer/ClearCommand.js";
import ContextLimits from "../Renderer/ContextLimits.js";
import CubeMap from "../Renderer/CubeMap.js";
import DrawCommand from "../Renderer/DrawCommand.js";
import Framebuffer from "../Renderer/Framebuffer.js";
import Pass from "../Renderer/Pass.js";
import PassState from "../Renderer/PassState.js";
import PixelDatatype from "../Renderer/PixelDatatype.js";
import Renderbuffer from "../Renderer/Renderbuffer.js";
import RenderbufferFormat from "../Renderer/RenderbufferFormat.js";
import RenderState from "../Renderer/RenderState.js";
import Sampler from "../Renderer/Sampler.js";
import Texture from "../Renderer/Texture.js";
import Camera from "./Camera.js";
import CullFace from "./CullFace.js";
import DebugCameraPrimitive from "./DebugCameraPrimitive.js";
import PerInstanceColorAppearance from "./PerInstanceColorAppearance.js";
import Primitive from "./Primitive.js";
import ShadowMapShader from "./ShadowMapShader.js";
/**
* <div class="notice">
* Use {@link Viewer#shadowMap} to get the scene's shadow map. Do not construct this directly.
* </div>
*
* <p>
* The normalOffset bias pushes the shadows forward slightly, and may be disabled
* for applications that require ultra precise shadows.
* </p>
*
* @alias ShadowMap
* @internalConstructor
* @class
*
* @privateParam {object} options An object containing the following properties:
* @privateParam {Context} options.context The context
* @privateParam {Camera} options.lightCamera A camera representing the light source.
* @privateParam {boolean} [options.enabled=true] Whether the shadow map is enabled.
* @privateParam {boolean} [options.isPointLight=false] Whether the light source is a point light. Point light shadows do not use cascades.
* @privateParam {number} [options.pointLightRadius=100.0] Radius of the point light.
* @privateParam {boolean} [options.cascadesEnabled=true] Use multiple shadow maps to cover different partitions of the view frustum.
* @privateParam {number} [options.numberOfCascades=4] The number of cascades to use for the shadow map. Supported values are one and four.
* @privateParam {number} [options.maximumDistance=5000.0] The maximum distance used for generating cascaded shadows. Lower values improve shadow quality.
* @privateParam {number} [options.size=2048] The width and height, in pixels, of each shadow map.
* @privateParam {boolean} [options.softShadows=false] Whether percentage-closer-filtering is enabled for producing softer shadows.
* @privateParam {number} [options.darkness=0.3] The shadow darkness.
* @privateParam {boolean} [options.normalOffset=true] Whether a normal bias is applied to shadows.
* @privateParam {boolean} [options.fadingEnabled=true] Whether shadows start to fade out once the light gets closer to the horizon.
*
* @exception {DeveloperError} Only one or four cascades are supported.
*
* @demo {@link https://sandcastle.cesium.com/index.html?src=Shadows.html|Cesium Sandcastle Shadows Demo}
*/
function ShadowMap(options) {
options = options ?? Frozen.EMPTY_OBJECT;
const context = options.context;
//>>includeStart('debug', pragmas.debug);
if (!defined(context)) {
throw new DeveloperError("context is required.");
}
if (!defined(options.lightCamera)) {
throw new DeveloperError("lightCamera is required.");
}
if (
defined(options.numberOfCascades) &&
options.numberOfCascades !== 1 &&
options.numberOfCascades !== 4
) {
throw new DeveloperError("Only one or four cascades are supported.");
}
//>>includeEnd('debug');
this._enabled = options.enabled ?? true;
this._softShadows = options.softShadows ?? false;
this._normalOffset = options.normalOffset ?? true;
this.dirty = true;
/**
* Specifies whether the shadow map originates from a light source. Shadow maps that are used for analytical
* purposes should set this to false so as not to affect scene rendering.
*
* @private
*/
this.fromLightSource = options.fromLightSource ?? true;
/**
* Determines the darkness of the shadows.
*
* @type {number}
* @default 0.3
*/
this.darkness = options.darkness ?? 0.3;
this._darkness = this.darkness;
/**
* Determines whether shadows start to fade out once the light gets closer to the horizon.
*
* @type {boolean}
* @default true
*/
this.fadingEnabled = options.fadingEnabled ?? true;
/**
* Determines the maximum distance of the shadow map. Only applicable for cascaded shadows. Larger distances may result in lower quality shadows.
*
* @type {number}
* @default 5000.0
*/
this.maximumDistance = options.maximumDistance ?? 5000.0;
this._outOfView = false;
this._outOfViewPrevious = false;
this._needsUpdate = true;
// In IE11 and Edge polygon offset is not functional.
// TODO : Also disabled for instances of Firefox and Chrome running ANGLE that do not support depth textures.
// Re-enable once https://github.com/CesiumGS/cesium/issues/4560 is resolved.
let polygonOffsetSupported = true;
if (
FeatureDetection.isInternetExplorer() ||
FeatureDetection.isEdge() ||
((FeatureDetection.isChrome() || FeatureDetection.isFirefox()) &&
FeatureDetection.isWindows() &&
!context.depthTexture)
) {
polygonOffsetSupported = false;
}
this._polygonOffsetSupported = polygonOffsetSupported;
this._terrainBias = {
polygonOffset: polygonOffsetSupported,
polygonOffsetFactor: 1.1,
polygonOffsetUnits: 4.0,
normalOffset: this._normalOffset,
normalOffsetScale: 0.5,
normalShading: true,
normalShadingSmooth: 0.3,
depthBias: 0.0001,
};
this._primitiveBias = {
polygonOffset: polygonOffsetSupported,
polygonOffsetFactor: 1.1,
polygonOffsetUnits: 4.0,
normalOffset: this._normalOffset,
normalOffsetScale: 0.1,
normalShading: true,
normalShadingSmooth: 0.05,
depthBias: 0.00002,
};
this._pointBias = {
polygonOffset: false,
polygonOffsetFactor: 1.1,
polygonOffsetUnits: 4.0,
normalOffset: this._normalOffset,
normalOffsetScale: 0.0,
normalShading: true,
normalShadingSmooth: 0.1,
depthBias: 0.0005,
};
// Framebuffer resources
this._depthAttachment = undefined;
this._colorAttachment = undefined;
// Uniforms
this._shadowMapMatrix = new Matrix4();
this._shadowMapTexture = undefined;
this._lightDirectionEC = new Cartesian3();
this._lightPositionEC = new Cartesian4();
this._distance = 0.0;
this._lightCamera = options.lightCamera;
this._shadowMapCamera = new ShadowMapCamera();
this._shadowMapCullingVolume = undefined;
this._sceneCamera = undefined;
this._boundingSphere = new BoundingSphere();
this._isPointLight = options.isPointLight ?? false;
this._pointLightRadius = options.pointLightRadius ?? 100.0;
this._cascadesEnabled = this._isPointLight
? false
: (options.cascadesEnabled ?? true);
this._numberOfCascades = !this._cascadesEnabled
? 0
: (options.numberOfCascades ?? 4);
this._fitNearFar = true;
this._maximumCascadeDistances = [25.0, 150.0, 700.0, Number.MAX_VALUE];
this._textureSize = new Cartesian2();
this._isSpotLight = false;
if (this._cascadesEnabled) {
// Cascaded shadows are always orthographic. The frustum dimensions are calculated on the fly.
this._shadowMapCamera.frustum = new OrthographicOffCenterFrustum();
} else if (defined(this._lightCamera.frustum.fov)) {
// If the light camera uses a perspective frustum, then the light source is a spot light
this._isSpotLight = true;
}
// Uniforms
this._cascadeSplits = [new Cartesian4(), new Cartesian4()];
this._cascadeMatrices = [
new Matrix4(),
new Matrix4(),
new Matrix4(),
new Matrix4(),
];
this._cascadeDistances = new Cartesian4();
let numberOfPasses;
if (this._isPointLight) {
numberOfPasses = 6; // One shadow map for each direction
} else if (!this._cascadesEnabled) {
numberOfPasses = 1;
} else {
numberOfPasses = this._numberOfCascades;
}
this._passes = new Array(numberOfPasses);
for (let i = 0; i < numberOfPasses; ++i) {
this._passes[i] = new ShadowPass(context);
}
this.debugShow = false;
this.debugFreezeFrame = false;
this._debugFreezeFrame = false;
this._debugCascadeColors = false;
this._debugLightFrustum = undefined;
this._debugCameraFrustum = undefined;
this._debugCascadeFrustums = new Array(this._numberOfCascades);
this._debugShadowViewCommand = undefined;
this._usesDepthTexture = context.depthTexture;
if (this._isPointLight) {
this._usesDepthTexture = false;
}
// Create render states for shadow casters
this._primitiveRenderState = undefined;
this._terrainRenderState = undefined;
this._pointRenderState = undefined;
createRenderStates(this);
// For clearing the shadow map texture every frame
this._clearCommand = new ClearCommand({
depth: 1.0,
color: new Color(),
});
this._clearPassState = new PassState(context);
this._size = options.size ?? 2048;
this.size = this._size;
}
/**
* Global maximum shadow distance used to prevent far off receivers from extending
* the shadow far plane. This helps set a tighter near/far when viewing objects from space.
*
* @private
*/
ShadowMap.MAXIMUM_DISTANCE = 20000.0;
function ShadowPass(context) {
this.camera = new ShadowMapCamera();
this.passState = new PassState(context);
this.framebuffer = undefined;
this.textureOffsets = undefined;
this.commandList = [];
this.cullingVolume = undefined;
}
function createRenderState(colorMask, bias) {
return RenderState.fromCache({
cull: {
enabled: true,
face: CullFace.BACK,
},
depthTest: {
enabled: true,
},
colorMask: {
red: colorMask,
green: colorMask,
blue: colorMask,
alpha: colorMask,
},
depthMask: true,
polygonOffset: {
enabled: bias.polygonOffset,
factor: bias.polygonOffsetFactor,
units: bias.polygonOffsetUnits,
},
});
}
function createRenderStates(shadowMap) {
// Enable the color mask if the shadow map is backed by a color texture, e.g. when depth textures aren't supported
const colorMask = !shadowMap._usesDepthTexture;
shadowMap._primitiveRenderState = createRenderState(
colorMask,
shadowMap._primitiveBias,
);
shadowMap._terrainRenderState = createRenderState(
colorMask,
shadowMap._terrainBias,
);
shadowMap._pointRenderState = createRenderState(
colorMask,
shadowMap._pointBias,
);
}
/**
* @private
*/
ShadowMap.prototype.debugCreateRenderStates = function () {
createRenderStates(this);
};
Object.defineProperties(ShadowMap.prototype, {
/**
* Determines if the shadow map will be shown.
*
* @memberof ShadowMap.prototype
* @type {boolean}
* @default true
*/
enabled: {
get: function () {
return this._enabled;
},
set: function (value) {
this.dirty = this._enabled !== value;
this._enabled = value;
},
},
/**
* Determines if a normal bias will be applied to shadows.
*
* @memberof ShadowMap.prototype
* @type {boolean}
* @default true
*/
normalOffset: {
get: function () {
return this._normalOffset;
},
set: function (value) {
this.dirty = this._normalOffset !== value;
this._normalOffset = value;
this._terrainBias.normalOffset = value;
this._primitiveBias.normalOffset = value;
this._pointBias.normalOffset = value;
},
},
/**
* Determines if soft shadows are enabled. Uses pcf filtering which requires more texture reads and may hurt performance.
*
* @memberof ShadowMap.prototype
* @type {boolean}
* @default false
*/
softShadows: {
get: function () {
return this._softShadows;
},
set: function (value) {
this.dirty = this._softShadows !== value;
this._softShadows = value;
},
},
/**
* The width and height, in pixels, of each shadow map.
*
* @memberof ShadowMap.prototype
* @type {number}
* @default 2048
*/
size: {
get: function () {
return this._size;
},
set: function (value) {
resize(this, value);
},
},
/**
* Whether the shadow map is out of view of the scene camera.
*
* @memberof ShadowMap.prototype
* @type {boolean}
* @readonly
* @private
*/
outOfView: {
get: function () {
return this._outOfView;
},
},
/**
* The culling volume of the shadow frustum.
*
* @memberof ShadowMap.prototype
* @type {CullingVolume}
* @readonly
* @private
*/
shadowMapCullingVolume: {
get: function () {
return this._shadowMapCullingVolume;
},
},
/**
* The passes used for rendering shadows. Each face of a point light or each cascade for a cascaded shadow map is a separate pass.
*
* @memberof ShadowMap.prototype
* @type {ShadowPass[]}
* @readonly
* @private
*/
passes: {
get: function () {
return this._passes;
},
},
/**
* Whether the light source is a point light.
*
* @memberof ShadowMap.prototype
* @type {boolean}
* @readonly
* @private
*/
isPointLight: {
get: function () {
return this._isPointLight;
},
},
/**
* Debug option for visualizing the cascades by color.
*
* @memberof ShadowMap.prototype
* @type {boolean}
* @default false
* @private
*/
debugCascadeColors: {
get: function () {
return this._debugCascadeColors;
},
set: function (value) {
this.dirty = this._debugCascadeColors !== value;
this._debugCascadeColors = value;
},
},
});
function destroyFramebuffer(shadowMap) {
const length = shadowMap._passes.length;
for (let i = 0; i < length; ++i) {
const pass = shadowMap._passes[i];
const framebuffer = pass.framebuffer;
if (defined(framebuffer) && !framebuffer.isDestroyed()) {
framebuffer.destroy();
}
pass.framebuffer = undefined;
}
// Destroy the framebuffer attachments
shadowMap._depthAttachment =
shadowMap._depthAttachment && shadowMap._depthAttachment.destroy();
shadowMap._colorAttachment =
shadowMap._colorAttachment && shadowMap._colorAttachment.destroy();
}
function createFramebufferColor(shadowMap, context) {
const depthRenderbuffer = new Renderbuffer({
context: context,
width: shadowMap._textureSize.x,
height: shadowMap._textureSize.y,
format: RenderbufferFormat.DEPTH_COMPONENT16,
});
const colorTexture = new Texture({
context: context,
width: shadowMap._textureSize.x,
height: shadowMap._textureSize.y,
pixelFormat: PixelFormat.RGBA,
pixelDatatype: PixelDatatype.UNSIGNED_BYTE,
sampler: Sampler.NEAREST,
});
const framebuffer = new Framebuffer({
context: context,
depthRenderbuffer: depthRenderbuffer,
colorTextures: [colorTexture],
destroyAttachments: false,
});
const length = shadowMap._passes.length;
for (let i = 0; i < length; ++i) {
const pass = shadowMap._passes[i];
pass.framebuffer = framebuffer;
pass.passState.framebuffer = framebuffer;
}
shadowMap._shadowMapTexture = colorTexture;
shadowMap._depthAttachment = depthRenderbuffer;
shadowMap._colorAttachment = colorTexture;
}
function createFramebufferDepth(shadowMap, context) {
const depthStencilTexture = new Texture({
context: context,
width: shadowMap._textureSize.x,
height: shadowMap._textureSize.y,
pixelFormat: PixelFormat.DEPTH_STENCIL,
pixelDatatype: PixelDatatype.UNSIGNED_INT_24_8,
sampler: Sampler.NEAREST,
});
const framebuffer = new Framebuffer({
context: context,
depthStencilTexture: depthStencilTexture,
destroyAttachments: false,
});
const length = shadowMap._passes.length;
for (let i = 0; i < length; ++i) {
const pass = shadowMap._passes[i];
pass.framebuffer = framebuffer;
pass.passState.framebuffer = framebuffer;
}
shadowMap._shadowMapTexture = depthStencilTexture;
shadowMap._depthAttachment = depthStencilTexture;
}
function createFramebufferCube(shadowMap, context) {
const depthRenderbuffer = new Renderbuffer({
context: context,
width: shadowMap._textureSize.x,
height: shadowMap._textureSize.y,
format: RenderbufferFormat.DEPTH_COMPONENT16,
});
const cubeMap = new CubeMap({
context: context,
width: shadowMap._textureSize.x,
height: shadowMap._textureSize.y,
pixelFormat: PixelFormat.RGBA,
pixelDatatype: PixelDatatype.UNSIGNED_BYTE,
sampler: Sampler.NEAREST,
});
const faces = [
cubeMap.negativeX,
cubeMap.negativeY,
cubeMap.negativeZ,
cubeMap.positiveX,
cubeMap.positiveY,
cubeMap.positiveZ,
];
for (let i = 0; i < 6; ++i) {
const framebuffer = new Framebuffer({
context: context,
depthRenderbuffer: depthRenderbuffer,
colorTextures: [faces[i]],
destroyAttachments: false,
});
const pass = shadowMap._passes[i];
pass.framebuffer = framebuffer;
pass.passState.framebuffer = framebuffer;
}
shadowMap._shadowMapTexture = cubeMap;
shadowMap._depthAttachment = depthRenderbuffer;
shadowMap._colorAttachment = cubeMap;
}
function createFramebuffer(shadowMap, context) {
if (shadowMap._isPointLight) {
createFramebufferCube(shadowMap, context);
} else if (shadowMap._usesDepthTexture) {
createFramebufferDepth(shadowMap, context);
} else {
createFramebufferColor(shadowMap, context);
}
}
function checkFramebuffer(shadowMap, context) {
// Attempt to make an FBO with only a depth texture. If it fails, fallback to a color texture.
if (
shadowMap._usesDepthTexture &&
shadowMap._passes[0].framebuffer.status !==
WebGLConstants.FRAMEBUFFER_COMPLETE
) {
shadowMap._usesDepthTexture = false;
createRenderStates(shadowMap);
destroyFramebuffer(shadowMap);
createFramebuffer(shadowMap, context);
}
}
function updateFramebuffer(shadowMap, context) {
if (
!defined(shadowMap._passes[0].framebuffer) ||
shadowMap._shadowMapTexture.width !== shadowMap._textureSize.x
) {
destroyFramebuffer(shadowMap);
createFramebuffer(shadowMap, context);
checkFramebuffer(shadowMap, context);
clearFramebuffer(shadowMap, context);
}
}
function clearFramebuffer(shadowMap, context, shadowPass) {
shadowPass = shadowPass ?? 0;
if (shadowMap._isPointLight || shadowPass === 0) {
shadowMap._clearCommand.framebuffer =
shadowMap._passes[shadowPass].framebuffer;
shadowMap._clearCommand.execute(context, shadowMap._clearPassState);
}
}
function resize(shadowMap, size) {
shadowMap._size = size;
const passes = shadowMap._passes;
const numberOfPasses = passes.length;
const textureSize = shadowMap._textureSize;
if (shadowMap._isPointLight) {
size =
ContextLimits.maximumCubeMapSize >= size
? size
: ContextLimits.maximumCubeMapSize;
textureSize.x = size;
textureSize.y = size;
const faceViewport = new BoundingRectangle(0, 0, size, size);
passes[0].passState.viewport = faceViewport;
passes[1].passState.viewport = faceViewport;
passes[2].passState.viewport = faceViewport;
passes[3].passState.viewport = faceViewport;
passes[4].passState.viewport = faceViewport;
passes[5].passState.viewport = faceViewport;
} else if (numberOfPasses === 1) {
// +----+
// | 1 |
// +----+
size =
ContextLimits.maximumTextureSize >= size
? size
: ContextLimits.maximumTextureSize;
textureSize.x = size;
textureSize.y = size;
passes[0].passState.viewport = new BoundingRectangle(0, 0, size, size);
} else if (numberOfPasses === 4) {
// +----+----+
// | 3 | 4 |
// +----+----+
// | 1 | 2 |
// +----+----+
size =
ContextLimits.maximumTextureSize >= size * 2
? size
: ContextLimits.maximumTextureSize / 2;
textureSize.x = size * 2;
textureSize.y = size * 2;
passes[0].passState.viewport = new BoundingRectangle(0, 0, size, size);
passes[1].passState.viewport = new BoundingRectangle(size, 0, size, size);
passes[2].passState.viewport = new BoundingRectangle(0, size, size, size);
passes[3].passState.viewport = new BoundingRectangle(
size,
size,
size,
size,
);
}
// Update clear pass state
shadowMap._clearPassState.viewport = new BoundingRectangle(
0,
0,
textureSize.x,
textureSize.y,
);
// Transforms shadow coordinates [0, 1] into the pass's region of the texture
for (let i = 0; i < numberOfPasses; ++i) {
const pass = passes[i];
const viewport = pass.passState.viewport;
const biasX = viewport.x / textureSize.x;
const biasY = viewport.y / textureSize.y;
const scaleX = viewport.width / textureSize.x;
const scaleY = viewport.height / textureSize.y;
pass.textureOffsets = new Matrix4(
scaleX,
0.0,
0.0,
biasX,
0.0,
scaleY,
0.0,
biasY,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
1.0,
);
}
}
const scratchViewport = new BoundingRectangle();
function createDebugShadowViewCommand(shadowMap, context) {
let fs;
if (shadowMap._isPointLight) {
fs =
"uniform samplerCube shadowMap_textureCube; \n" +
"in vec2 v_textureCoordinates; \n" +
"void main() \n" +
"{ \n" +
" vec2 uv = v_textureCoordinates; \n" +
" vec3 dir; \n" +
" \n" +
" if (uv.y < 0.5) \n" +
" { \n" +
" if (uv.x < 0.333) \n" +
" { \n" +
" dir.x = -1.0; \n" +
" dir.y = uv.x * 6.0 - 1.0; \n" +
" dir.z = uv.y * 4.0 - 1.0; \n" +
" } \n" +
" else if (uv.x < 0.666) \n" +
" { \n" +
" dir.y = -1.0; \n" +
" dir.x = uv.x * 6.0 - 3.0; \n" +
" dir.z = uv.y * 4.0 - 1.0; \n" +
" } \n" +
" else \n" +
" { \n" +
" dir.z = -1.0; \n" +
" dir.x = uv.x * 6.0 - 5.0; \n" +
" dir.y = uv.y * 4.0 - 1.0; \n" +
" } \n" +
" } \n" +
" else \n" +
" { \n" +
" if (uv.x < 0.333) \n" +
" { \n" +
" dir.x = 1.0; \n" +
" dir.y = uv.x * 6.0 - 1.0; \n" +
" dir.z = uv.y * 4.0 - 3.0; \n" +
" } \n" +
" else if (uv.x < 0.666) \n" +
" { \n" +
" dir.y = 1.0; \n" +
" dir.x = uv.x * 6.0 - 3.0; \n" +
" dir.z = uv.y * 4.0 - 3.0; \n" +
" } \n" +
" else \n" +
" { \n" +
" dir.z = 1.0; \n" +
" dir.x = uv.x * 6.0 - 5.0; \n" +
" dir.y = uv.y * 4.0 - 3.0; \n" +
" } \n" +
" } \n" +
" \n" +
" float shadow = czm_unpackDepth(czm_textureCube(shadowMap_textureCube, dir)); \n" +
" out_FragColor = vec4(vec3(shadow), 1.0); \n" +
"} \n";
} else {
fs =
`${
"uniform sampler2D shadowMap_texture; \n" +
"in vec2 v_textureCoordinates; \n" +
"void main() \n" +
"{ \n"
}${
shadowMap._usesDepthTexture
? " float shadow = texture(shadowMap_texture, v_textureCoordinates).r; \n"
: " float shadow = czm_unpackDepth(texture(shadowMap_texture, v_textureCoordinates)); \n"
} out_FragColor = vec4(vec3(shadow), 1.0); \n` + `} \n`;
}
const drawCommand = context.createViewportQuadCommand(fs, {
uniformMap: {
shadowMap_texture: function () {
return shadowMap._shadowMapTexture;
},
shadowMap_textureCube: function () {
return shadowMap._shadowMapTexture;
},
},
});
drawCommand.pass = Pass.OVERLAY;
return drawCommand;
}
function updateDebugShadowViewCommand(shadowMap, frameState) {
// Draws the shadow map on the bottom-right corner of the screen
const context = frameState.context;
const screenWidth = frameState.context.drawingBufferWidth;
const screenHeight = frameState.context.drawingBufferHeight;
const size = Math.min(screenWidth, screenHeight) * 0.3;
const viewport = scratchViewport;
viewport.x = screenWidth - size;
viewport.y = 0;
viewport.width = size;
viewport.height = size;
let debugCommand = shadowMap._debugShadowViewCommand;
if (!defined(debugCommand)) {
debugCommand = createDebugShadowViewCommand(shadowMap, context);
shadowMap._debugShadowViewCommand = debugCommand;
}
// Get a new RenderState for the updated viewport size
if (
!defined(debugCommand.renderState) ||
!BoundingRectangle.equals(debugCommand.renderState.viewport, viewport)
) {
debugCommand.renderState = RenderState.fromCache({
viewport: BoundingRectangle.clone(viewport),
});
}
frameState.commandList.push(shadowMap._debugShadowViewCommand);
}
const frustumCornersNDC = new Array(8);
frustumCornersNDC[0] = new Cartesian4(-1.0, -1.0, -1.0, 1.0);
frustumCornersNDC[1] = new Cartesian4(1.0, -1.0, -1.0, 1.0);
frustumCornersNDC[2] = new Cartesian4(1.0, 1.0, -1.0, 1.0);
frustumCornersNDC[3] = new Cartesian4(-1.0, 1.0, -1.0, 1.0);
frustumCornersNDC[4] = new Cartesian4(-1.0, -1.0, 1.0, 1.0);
frustumCornersNDC[5] = new Cartesian4(1.0, -1.0, 1.0, 1.0);
frustumCornersNDC[6] = new Cartesian4(1.0, 1.0, 1.0, 1.0);
frustumCornersNDC[7] = new Cartesian4(-1.0, 1.0, 1.0, 1.0);
const scratchMatrix = new Matrix4();
const scratchFrustumCorners = new Array(8);
for (let i = 0; i < 8; ++i) {
scratchFrustumCorners[i] = new Cartesian4();
}
function createDebugPointLight(modelMatrix, color) {
const box = new GeometryInstance({
geometry: new BoxOutlineGeometry({
minimum: new Cartesian3(-0.5, -0.5, -0.5),
maximum: new Cartesian3(0.5, 0.5, 0.5),
}),
attributes: {
color: ColorGeometryInstanceAttribute.fromColor(color),
},
});
const sphere = new GeometryInstance({
geometry: new SphereOutlineGeometry({
radius: 0.5,
}),
attributes: {
color: ColorGeometryInstanceAttribute.fromColor(color),
},
});
return new Primitive({
geometryInstances: [box, sphere],
appearance: new PerInstanceColorAppearance({
translucent: false,
flat: true,
}),
asynchronous: false,
modelMatrix: modelMatrix,
});
}
const debugOutlineColors = [Color.RED, Color.GREEN, Color.BLUE, Color.MAGENTA];
const scratchScale = new Cartesian3();
function applyDebugSettings(shadowMap, frameState) {
updateDebugShadowViewCommand(shadowMap, frameState);
const enterFreezeFrame =
shadowMap.debugFreezeFrame && !shadowMap._debugFreezeFrame;
shadowMap._debugFreezeFrame = shadowMap.debugFreezeFrame;
// Draw scene camera in freeze frame mode
if (shadowMap.debugFreezeFrame) {
if (enterFreezeFrame) {
// Recreate debug camera when entering freeze frame mode
shadowMap._debugCameraFrustum =
shadowMap._debugCameraFrustum &&
shadowMap._debugCameraFrustum.destroy();
shadowMap._debugCameraFrustum = new DebugCameraPrimitive({
camera: shadowMap._sceneCamera,
color: Color.CYAN,
updateOnChange: false,
});
}
shadowMap._debugCameraFrustum.update(frameState);
}
if (shadowMap._cascadesEnabled) {
// Draw cascades only in freeze frame mode
if (shadowMap.debugFreezeFrame) {
if (enterFreezeFrame) {
// Recreate debug frustum when entering freeze frame mode
shadowMap._debugLightFrustum =
shadowMap._debugLightFrustum &&
shadowMap._debugLightFrustum.destroy();
shadowMap._debugLightFrustum = new DebugCameraPrimitive({
camera: shadowMap._shadowMapCamera,
color: Color.YELLOW,
updateOnChange: false,
});
}
shadowMap._debugLightFrustum.update(frameState);
for (let i = 0; i < shadowMap._numberOfCascades; ++i) {
if (enterFreezeFrame) {
// Recreate debug frustum when entering freeze frame mode
shadowMap._debugCascadeFrustums[i] =
shadowMap._debugCascadeFrustums[i] &&
shadowMap._debugCascadeFrustums[i].destroy();
shadowMap._debugCascadeFrustums[i] = new DebugCameraPrimitive({
camera: shadowMap._passes[i].camera,
color: debugOutlineColors[i],
updateOnChange: false,
});
}
shadowMap._debugCascadeFrustums[i].update(frameState);
}
}
} else if (shadowMap._isPointLight) {
if (!defined(shadowMap._debugLightFrustum) || shadowMap._needsUpdate) {
const translation = shadowMap._shadowMapCamera.positionWC;
const rotation = Quaternion.IDENTITY;
const uniformScale = shadowMap._pointLightRadius * 2.0;
const scale = Cartesian3.fromElements(
uniformScale,
uniformScale,
uniformScale,
scratchScale,
);
const modelMatrix = Matrix4.fromTranslationQuaternionRotationScale(
translation,
rotation,
scale,
scratchMatrix,
);
shadowMap._debugLightFrustum =
shadowMap._debugLightFrustum && shadowMap._debugLightFrustum.destroy();
shadowMap._debugLightFrustum = createDebugPointLight(
modelMatrix,
Color.YELLOW,
);
}
shadowMap._debugLightFrustum.update(frameState);
} else {
if (!defined(shadowMap._debugLightFrustum) || shadowMap._needsUpdate) {
shadowMap._debugLightFrustum = new DebugCameraPrimitive({
camera: shadowMap._shadowMapCamera,
color: Color.YELLOW,
updateOnChange: false,
});
}
shadowMap._debugLightFrustum.update(frameState);
}
}
function ShadowMapCamera() {
this.viewMatrix = new Matrix4();
this.inverseViewMatrix = new Matrix4();
this.frustum = undefined;
this.positionCartographic = new Cartographic();
this.positionWC = new Cartesian3();
this.directionWC = Cartesian3.clone(Cartesian3.UNIT_Z);
this.upWC = Cartesian3.clone(Cartesian3.UNIT_Y);
this.rightWC = Cartesian3.clone(Cartesian3.UNIT_X);
this.viewProjectionMatrix = new Matrix4();
}
ShadowMapCamera.prototype.clone = function (camera) {
Matrix4.clone(camera.viewMatrix, this.viewMatrix);
Matrix4.clone(camera.inverseViewMatrix, this.inverseViewMatrix);
this.frustum = camera.frustum.clone(this.frustum);
Cartographic.clone(camera.positionCartographic, this.positionCartographic);
Cartesian3.clone(camera.positionWC, this.positionWC);
Cartesian3.clone(camera.directionWC, this.directionWC);
Cartesian3.clone(camera.upWC, this.upWC);
Cartesian3.clone(camera.rightWC, this.rightWC);
};
// Converts from NDC space to texture space
const scaleBiasMatrix = new Matrix4(
0.5,
0.0,
0.0,
0.5,
0.0,
0.5,
0.0,
0.5,
0.0,
0.0,
0.5,
0.5,
0.0,
0.0,
0.0,
1.0,
);
ShadowMapCamera.prototype.getViewProjection = function () {
const view = this.viewMatrix;
const projection = this.frustum.projectionMatrix;
Matrix4.multiply(projection, view, this.viewProjectionMatrix);
Matrix4.multiply(
scaleBiasMatrix,
this.viewProjectionMatrix,
this.viewProjectionMatrix,
);
return this.viewProjectionMatrix;
};
const scratchSplits = new Array(5);
const scratchFrustum = new PerspectiveFrustum();
const scratchCascadeDistances = new Array(4);
const scratchMin = new Cartesian3();
const scratchMax = new Cartesian3();
function computeCascades(shadowMap, frameState) {
const shadowMapCamera = shadowMap._shadowMapCamera;
const sceneCamera = shadowMap._sceneCamera;
const cameraNear = sceneCamera.frustum.near;
const cameraFar = sceneCamera.frustum.far;
const numberOfCascades = shadowMap._numberOfCascades;
// Split cascades. Use a mix of linear and log splits.
let i;
const range = cameraFar - cameraNear;
const ratio = cameraFar / cameraNear;
let lambda = 0.9;
let clampCascadeDistances = false;
// When the camera is close to a relatively small model, provide more detail in the closer cascades.
// If the camera is near or inside a large model, such as the root tile of a city, then use the default values.
// To get the most accurate cascade splits we would need to find the min and max values from the depth texture.
if (frameState.shadowState.closestObjectSize < 200.0) {
clampCascadeDistances = true;
lambda = 0.9;
}
const cascadeDistances = scratchCascadeDistances;
const splits = scratchSplits;
splits[0] = cameraNear;
splits[numberOfCascades] = cameraFar;
// Find initial splits
for (i = 0; i < numberOfCascades; ++i) {
const p = (i + 1) / numberOfCascades;
const logScale = cameraNear * Math.pow(ratio, p);
const uniformScale = cameraNear + range * p;
const split = CesiumMath.lerp(uniformScale, logScale, lambda);
splits[i + 1] = split;
cascadeDistances[i] = split - splits[i];
}
if (clampCascadeDistances) {
// Clamp each cascade to its maximum distance
for (i = 0; i < numberOfCascades; ++i) {
cascadeDistances[i] = Math.min(
cascadeDistances[i],
shadowMap._maximumCascadeDistances[i],
);
}
// Recompute splits
let distance = splits[0];
for (i = 0; i < numberOfCascades - 1; ++i) {
distance += cascadeDistances[i];
splits[i + 1] = distance;
}
}
Cartesian4.unpack(splits, 0, shadowMap._cascadeSplits[0]);
Cartesian4.unpack(splits, 1, shadowMap._cascadeSplits[1]);
Cartesian4.unpack(cascadeDistances, 0, shadowMap._cascadeDistances);
const shadowFrustum = shadowMapCamera.frustum;
const left = shadowFrustum.left;
const right = shadowFrustum.right;
const bottom = shadowFrustum.bottom;
const top = shadowFrustum.top;
const near = shadowFrustum.near;
const far = shadowFrustum.far;
const position = shadowMapCamera.positionWC;
const direction = shadowMapCamera.directionWC;
const up = shadowMapCamera.upWC;
const cascadeSubFrustum = sceneCamera.frustum.clone(scratchFrustum);
const shadowViewProjection = shadowMapCamera.getViewProjection();
for (i = 0; i < numberOfCascades; ++i) {
// Find the bounding box of the camera sub-frustum in shadow map texture space
cascadeSubFrustum.near = splits[i];
cascadeSubFrustum.far = splits[i + 1];
const viewProjection = Matrix4.multiply(
cascadeSubFrustum.projectionMatrix,
sceneCamera.viewMatrix,
scratchMatrix,
);
const inverseViewProjection = Matrix4.inverse(
viewProjection,
scratchMatrix,
);
const shadowMapMatrix = Matrix4.multiply(
shadowViewProjection,
inverseViewProjection,
scratchMatrix,
);
// Project each corner from camera NDC space to shadow map texture space. Min and max will be from 0 to 1.
const min = Cartesian3.fromElements(
Number.MAX_VALUE,
Number.MAX_VALUE,
Number.MAX_VALUE,
scratchMin,
);
const max = Cartesian3.fromElements(
-Number.MAX_VALUE,
-Number.MAX_VALUE,
-Number.MAX_VALUE,
scratchMax,
);
for (let k = 0; k < 8; ++k) {
const corner = Cartesian4.clone(
frustumCornersNDC[k],
scratchFrustumCorners[k],
);
Matrix4.multiplyByVector(shadowMapMatrix, corner, corner);
Cartesian3.divideByScalar(corner, corner.w, corner); // Handle the perspective divide
Cartesian3.minimumByComponent(corner, min, min);
Cartesian3.maximumByComponent(corner, max, max);
}
// Limit light-space coordinates to the [0, 1] range
min.x = Math.max(min.x, 0.0);
min.y = Math.max(min.y, 0.0);
min.z = 0.0; // Always start cascade frustum at the top of the light frustum to capture objects in the light's path
max.x = Math.min(max.x, 1.0);
max.y = Math.min(max.y, 1.0);
max.z = Math.min(max.z, 1.0);
const pass = shadowMap._passes[i];
const cascadeCamera = pass.camera;
cascadeCamera.clone(shadowMapCamera); // PERFORMANCE_IDEA : could do a shallow clone for all properties except the frustum
const frustum = cascadeCamera.frustum;
frustum.left = left + min.x * (right - left);
frustum.right = left + max.x * (right - left);
frustum.bottom = bottom + min.y * (top - bottom);
frustum.top = bottom + max.y * (top - bottom);
frustum.near = near + min.z * (far - near);
frustum.far = near + max.z * (far - near);
pass.cullingVolume = cascadeCamera.frustum.computeCullingVolume(
position,
direction,
up,
);
// Transforms from eye space to the cascade's texture space
const cascadeMatrix = shadowMap._cascadeMatrices[i];
Matrix4.multiply(
cascadeCamera.getViewProjection(),
sceneCamera.inverseViewMatrix,
cascadeMatrix,
);
Matrix4.multiply(pass.textureOffsets, cascadeMatrix, cascadeMatrix);
}
}
const scratchLightView = new Matrix4();
const scratchRight = new Cartesian3();
const scratchUp = new Cartesian3();
const scratchTranslation = new Cartesian3();
function fitShadowMapToScene(shadowMap, frameState) {
const shadowMapCamera = shadowMap._shadowMapCamera;
const sceneCamera = shadowMap._sceneCamera;
// 1. First find a tight bounding box in light space that contains the entire camera frustum.
const viewProjection = Matrix4.multiply(
sceneCamera.frustum.projectionMatrix,
sceneCamera.viewMatrix,
scratchMatrix,
);
const inverseViewProjection = Matrix4.inverse(viewProjection, scratchMatrix);
// Start to construct the light view matrix. Set translation later once the bounding box is found.
const lightDir = shadowMapCamera.directionWC;
let lightUp = sceneCamera.directionWC; // Align shadows to the camera view.
if (Cartesian3.equalsEpsilon(lightDir, lightUp, CesiumMath.EPSILON10)) {
lightUp = sceneCamera.upWC;
}
const lightRight = Cartesian3.cross(lightDir, lightUp, scratchRight);
lightUp = Cartesian3.cross(lightRight, lightDir, scratchUp); // Recalculate up now that right is derived
Cartesian3.normalize(lightUp, lightUp);
Cartesian3.normalize(lightRight, lightRight);
const lightPosition = Cartesian3.fromElements(
0.0,
0.0,
0.0,
scratchTranslation,
);
let lightView = Matrix4.computeView(
lightPosition,
lightDir,
lightUp,
lightRight,
scratchLightView,
);
const cameraToLight = Matrix4.multiply(
lightView,
inverseViewProjection,
scratchMatrix,
);
// Project each corner from NDC space to light view space, and calculate a min and max in light view space
const min = Cartesian3.fromElements(
Number.MAX_VALUE,
Number.MAX_VALUE,
Number.MAX_VALUE,
scratchMin,
);
const max = Cartesian3.fromElements(
-Number.MAX_VALUE,
-Number.MAX_VALUE,
-Number.MAX_VALUE,
scratchMax,
);
for (let i = 0; i < 8; ++i) {
const corner = Cartesian4.clone(
frustumCornersNDC[i],
scratchFrustumCorners[i],
);
Matrix4.multiplyByVector(cameraToLight, corner, corner);
Cartesian3.divideByScalar(corner, corner.w, corner); // Handle the perspective divide
Cartesian3.minimumByComponent(corner, min, min);
Cartesian3.maximumByComponent(corner, max, max);
}
// 2. Set bounding box back to include objects in the light's view
max.z += 1000.0; // Note: in light space, a positive number is behind the camera
min.z -= 10.0; // Extend the shadow volume forward slightly to avoid problems right at the edge
// 3. Adjust light view matrix so that it is centered on the bounding volume
const translation = scratchTranslation;
translation.x = -(0.5 * (min.x + max.x));
translation.y = -(0.5 * (min.y + max.y));
translation.z = -max.z;
const translationMatrix = Matrix4.fromTranslation(translation, scratchMatrix);
lightView = Matrix4.multiply(translationMatrix, lightView, lightView);
// 4. Create an orthographic frustum that covers the bounding box extents
const halfWidth = 0.5 * (max.x - min.x);
const halfHeight = 0.5 * (max.y - min.y);
const depth = max.z - min.z;
const frustum = shadowMapCamera.frustum;
frustum.left = -halfWidth;
frustum.right = halfWidth;
frustum.bottom = -halfHeight;
frustum.top = halfHeight;
frustum.near = 0.01;
frustum.far = depth;
// 5. Update the shadow map camera
Matrix4.clone(lightView, shadowMapCamera.viewMatrix);
Matrix4.inverse(lightView, shadowMapCamera.inverseViewMatrix);
Matrix4.getTranslation(
shadowMapCamera.inverseViewMatrix,
shadowMapCamera.positionWC,
);
frameState.mapProjection.ellipsoid.cartesianToCartographic(
shadowMapCamera.positionWC,
shadowMapCamera.positionCartographic,
);
Cartesian3.clone(lightDir, shadowMapCamera.directionWC);
Cartesian3.clone(lightUp, shadowMapCamera.upWC);
Cartesian3.clone(lightRight, shadowMapCamera.rightWC);
}
const directions = [
new Cartesian3(-1.0, 0.0, 0.0),
new Cartesian3(0.0, -1.0, 0.0),
new Cartesian3(0.0, 0.0, -1.0),
new Cartesian3(1.0, 0.0, 0.0),
new Cartesian3(0.0, 1.0, 0.0),
new Cartesian3(0.0, 0.0, 1.0),
];
const ups = [
new Cartesian3(0.0, -1.0, 0.0),
new Cartesian3(0.0, 0.0, -1.0),
new Cartesian3(0.0, -1.0, 0.0),
new Cartesian3(0.0, -1.0, 0.0),
new Cartesian3(0.0, 0.0, 1.0),
new Cartesian3(0.0, -1.0, 0.0),
];
const rights = [
new Cartesian3(0.0, 0.0, 1.0),
new Cartesian3(1.0, 0.0, 0.0),
new Cartesian3(-1.0, 0.0, 0.0),
new Cartesian3(0.0, 0.0, -1.0),
new Cartesian3(1.0, 0.0, 0.0),
new Cartesian3(1.0, 0.0, 0.0),
];
function computeOmnidirectional(shadowMap, frameState) {
// All sides share the same frustum
const frustum = new PerspectiveFrustum();
frustum.fov = CesiumMath.PI_OVER_TWO;
frustum.near = 1.0;
frustum.far = shadowMap._pointLightRadius;
frustum.aspectRatio = 1.0;
for (let i = 0; i < 6; ++i) {
const camera = shadowMap._passes[i].camera;
camera.positionWC = shadowMap._shadowMapCamera.positionWC;
camera.positionCartographic =
frameState.mapProjection.ellipsoid.cartesianToCartographic(
camera.positionWC,
camera.positionCartographic,
);
camera.directionWC = directions[i];
camera.upWC = ups[i];
camera.rightWC = rights[i];
Matrix4.computeView(
camera.positionWC,
camera.directionWC,
camera.upWC,
camera.rightWC,
camera.viewMatrix,
);
Matrix4.inverse(camera.viewMatrix, camera.inverseViewMatrix);
camera.frustum = frustum;
}
}
const scratchCartesian1 = new Cartesian3();
const scratchCartesian2 = new Cartesian3();
const scratchBoundingSphere = new BoundingSphere();
const scratchCenter = scratchBoundingSphere.center;
function checkVisibility(shadowMap, frameState) {
const sceneCamera = shadowMap._sceneCamera;
const shadowMapCamera = shadowMap._shadowMapCamera;
const boundingSphere = scratchBoundingSphere;
// Check whether the shadow map is in view and needs to be updated
if (shadowMap._cascadesEnabled) {
// If the nearest shadow receiver is further than the shadow map's maximum distance then the shadow map is out of view.
if (sceneCamera.frustum.near >= shadowMap.maximumDistance) {
shadowMap._outOfView = true;
shadowMap._needsUpdate = false;
return;
}
// If the light source is below the horizon then the shadow map is out of view
const surfaceNormal =
frameState.mapProjection.ellipsoid.geodeticSurfaceNormal(
sceneCamera.positionWC,
scratchCartesian1,
);
const lightDirection = Cartesian3.negate(
shadowMapCamera.directionWC,
scratchCartesian2,
);
const dot = Cartesian3.dot(surfaceNormal, lightDirection);
if (shadowMap.fadingEnabled) {
// Shadows start to fade out once the light gets closer to the horizon.
// At this point the globe uses vertex lighting alone to darken the surface.
const darknessAmount = CesiumMath.clamp(dot / 0.1, 0.0, 1.0);
shadowMap._darkness = CesiumMath.lerp(
1.0,
shadowMap.darkness,
darknessAmount,
);
} else {
shadowMap._darkness = shadowMap.darkness;
}
if (dot < 0.0) {
shadowMap._outOfView = true;
shadowMap._needsUpdate = false;
return;
}
// By default cascaded shadows need to update and are always in view
shadowMap._needsUpdate = true;
shadowMap._outOfView = false;
} else if (shadowMap._isPointLight) {
// Sphere-frustum intersection test
boundingSphere.center = shadowMapCamera.positionWC;
boundingSphere.radius = shadowMap._pointLightRadius;
shadowMap._outOfView =
frameState.cullingVolume.computeVisibility(boundingSphere) ===
Intersect.OUTSIDE;
shadowMap._needsUpdate =
!shadowMap._outOfView &&
!shadowMap._boundingSphere.equals(boundingSphere);
BoundingSphere.clone(boundingSphere, shadowMap._boundingSphere);
} else {
// Simplify frustum-frustum intersection test as a sphere-frustum test
const frustumRadius = shadowMapCamera.frustum.far / 2.0;
const frustumCenter = Cartesian3.add(
shadowMapCamera.positionWC,
Cartesian3.multiplyByScalar(
shadowMapCamera.directionWC,
frustumRadius,
scratchCenter,
),
scratchCenter,
);
boundingSphere.center = frustumCenter;
boundingSphere.radius = frustumRadius;
shadowMap._outOfView =
frameState.cullingVolume.computeVisibility(boundingSphere) ===
Intersect.OUTSIDE;
shadowMap._needsUpdate =
!shadowMap._outOfView &&
!shadowMap._boundingSphere.equals(boundingSphere);
BoundingSphere.clone(boundingSphere, shadowMap._boundingSphere);
}
}
function updateCameras(shadowMap, frameState) {
const camera = frameState.camera; // The actual camera in the scene
const lightCamera = shadowMap._lightCamera; // The external camera representing the light source
const sceneCamera = shadowMap._sceneCamera; // Clone of camera, with clamped near and far planes
const shadowMapCamera = shadowMap._shadowMapCamera; // Camera representing the shadow volume, initially cloned from lightCamera
// Clone light camera into the shadow map camera
if (shadowMap._cascadesEnabled) {
Cartesian3.clone(lightCamera.directionWC, shadowMapCamera.directionWC);
} else if (shadowMap._isPointLight) {
Cartesian3.clone(lightCamera.positionWC, shadowMapCamera.positionWC);
} else {
shadowMapCamera.clone(lightCamera);
}
// Get the light direction in eye coordinates
const lightDirection = shadowMap._lightDirectionEC;
Matrix4.multiplyByPointAsVector(
camera.viewMatrix,
shadowMapCamera.directionWC,
lightDirection,
);
Cartesian3.normalize(lightDirection, lightDirection);
Cartesian3.negate(lightDirection, lightDirection);
// Get the light position in eye coordinates
Matrix4.multiplyByPoint(
camera.viewMatrix,
shadowMapCamera.positionWC,
shadowMap._lightPositionEC,
);
shadowMap._lightPositionEC.w = shadowMap._pointLightRadius;
// Get the near and far of the scene camera
let near;
let far;
if (shadowMap._fitNearFar) {
// shadowFar can be very large, so limit to shadowMap.maximumDistance
// Push the far plane slightly further than the near plane to avoid degenerate frustum
near = Math.min(
frameState.shadowState.nearPlane,
shadowMap.maximumDistance,
);
far = Math.min(frameState.shadowState.farPlane, shadowMap.maximumDistance);
far = Math.max(far, near + 1.0);
} else {
near = camera.frustum.near;
far = shadowMap.maximumDistance;
}
shadowMap._sceneCamera = Camera.clone(camera, sceneCamera);
camera.frustum.clone(shadowMap._sceneCamera.frustum);
shadowMap._sceneCamera.frustum.near = near;
shadowMap._sceneCamera.frustum.far = far;
shadowMap._distance = far - near;
checkVisibility(shadowMap, frameState);
if (!shadowMap._outOfViewPrevious && shadowMap._outOfView) {
shadowMap._needsUpdate = true;
}
shadowMap._outOfViewPrevious = shadowMap._outOfView;
}
/**
* @private
*/
ShadowMap.prototype.update = function (frameState) {
updateCameras(this, frameState);
if (this._needsUpdate) {
updateFramebuffer(this, frameState.context);
if (this._isPointLight) {
computeOmnidirectional(this, frameState);
}
if (this._cascadesEnabled) {
fitShadowMapToScene(this, frameState);
if (this._numberOfCascades > 1) {
computeCascades(this, frameState);
}
}