UNPKG

@cesium/engine

Version:

CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.

1,530 lines (1,353 loc) 96.9 kB
import Cartesian2 from "../Core/Cartesian2.js"; import Cartesian3 from "../Core/Cartesian3.js"; import Cartesian4 from "../Core/Cartesian4.js"; import Cartographic from "../Core/Cartographic.js"; import defined from "../Core/defined.js"; import destroyObject from "../Core/destroyObject.js"; import DeveloperError from "../Core/DeveloperError.js"; import Ellipsoid from "../Core/Ellipsoid.js"; import HeadingPitchRoll from "../Core/HeadingPitchRoll.js"; import IntersectionTests from "../Core/IntersectionTests.js"; import KeyboardEventModifier from "../Core/KeyboardEventModifier.js"; import CesiumMath from "../Core/Math.js"; import Matrix3 from "../Core/Matrix3.js"; import Matrix4 from "../Core/Matrix4.js"; import OrthographicFrustum from "../Core/OrthographicFrustum.js"; import Plane from "../Core/Plane.js"; import Quaternion from "../Core/Quaternion.js"; import Ray from "../Core/Ray.js"; import VerticalExaggeration from "../Core/VerticalExaggeration.js"; import Transforms from "../Core/Transforms.js"; import CameraEventAggregator from "./CameraEventAggregator.js"; import CameraEventType from "./CameraEventType.js"; import MapMode2D from "./MapMode2D.js"; import SceneMode from "./SceneMode.js"; import SceneTransforms from "./SceneTransforms.js"; import TweenCollection from "./TweenCollection.js"; /** * Modifies the camera position and orientation based on mouse input to a canvas. * @alias ScreenSpaceCameraController * @constructor * * @param {Scene} scene The scene. */ function ScreenSpaceCameraController(scene) { //>>includeStart('debug', pragmas.debug); if (!defined(scene)) { throw new DeveloperError("scene is required."); } //>>includeEnd('debug'); /** * If true, inputs are allowed conditionally with the flags enableTranslate, enableZoom, * enableRotate, enableTilt, and enableLook. If false, all inputs are disabled. * * NOTE: This setting is for temporary use cases, such as camera flights and * drag-selection of regions (see Picking demo). It is typically set to false at the * start of such events, and set true on completion. To keep inputs disabled * past the end of camera flights, you must use the other booleans (enableTranslate, * enableZoom, enableRotate, enableTilt, and enableLook). * @type {boolean} * @default true */ this.enableInputs = true; /** * If true, allows the user to pan around the map. If false, the camera stays locked at the current position. * This flag only applies in 2D and Columbus view modes. * @type {boolean} * @default true */ this.enableTranslate = true; /** * If true, allows the user to zoom in and out. If false, the camera is locked to the current distance from the ellipsoid. * @type {boolean} * @default true */ this.enableZoom = true; /** * If true, allows the user to rotate the world which translates the user's position. * This flag only applies in 2D and 3D. * @type {boolean} * @default true */ this.enableRotate = true; /** * If true, allows the user to tilt the camera. If false, the camera is locked to the current heading. * This flag only applies in 3D and Columbus view. * @type {boolean} * @default true */ this.enableTilt = true; /** * If true, allows the user to use free-look. If false, the camera view direction can only be changed through translating * or rotating. This flag only applies in 3D and Columbus view modes. * @type {boolean} * @default true */ this.enableLook = true; /** * A parameter in the range <code>[0, 1)</code> used to determine how long * the camera will continue to spin because of inertia. * With value of zero, the camera will have no inertia. * @type {number} * @default 0.9 */ this.inertiaSpin = 0.9; /** * A parameter in the range <code>[0, 1)</code> used to determine how long * the camera will continue to translate because of inertia. * With value of zero, the camera will have no inertia. * @type {number} * @default 0.9 */ this.inertiaTranslate = 0.9; /** * A parameter in the range <code>[0, 1)</code> used to determine how long * the camera will continue to zoom because of inertia. * With value of zero, the camera will have no inertia. * @type {number} * @default 0.8 */ this.inertiaZoom = 0.8; /** * A parameter in the range <code>[0, 1)</code> used to limit the range * of various user inputs to a percentage of the window width/height per animation frame. * This helps keep the camera under control in low-frame-rate situations. * @type {number} * @default 0.1 */ this.maximumMovementRatio = 0.1; /** * Sets the duration, in seconds, of the bounce back animations in 2D and Columbus view. * @type {number} * @default 3.0 */ this.bounceAnimationTime = 3.0; /** * The minimum magnitude, in meters, of the camera position when zooming. Defaults to 1.0. * @type {number} * @default 1.0 */ this.minimumZoomDistance = 1.0; /** * The maximum magnitude, in meters, of the camera position when zooming. Defaults to positive infinity. * @type {number} * @default {@link Number.POSITIVE_INFINITY} */ this.maximumZoomDistance = Number.POSITIVE_INFINITY; /** * A multiplier for the speed at which the camera will zoom. * @type {Number} * @default 5.0 */ this.zoomFactor = 5.0; /** * The input that allows the user to pan around the map. This only applies in 2D and Columbus view modes. * <p> * The type can be a {@link CameraEventType}, <code>undefined</code>, an object with <code>eventType</code> * and <code>modifier</code> properties with types <code>CameraEventType</code> and {@link KeyboardEventModifier}, * or an array of any of the preceding. * </p> * @type {CameraEventType|Array|undefined} * @default {@link CameraEventType.LEFT_DRAG} */ this.translateEventTypes = CameraEventType.LEFT_DRAG; /** * The input that allows the user to zoom in/out. * <p> * The type can be a {@link CameraEventType}, <code>undefined</code>, an object with <code>eventType</code> * and <code>modifier</code> properties with types <code>CameraEventType</code> and {@link KeyboardEventModifier}, * or an array of any of the preceding. * </p> * @type {CameraEventType|Array|undefined} * @default [{@link CameraEventType.RIGHT_DRAG}, {@link CameraEventType.WHEEL}, {@link CameraEventType.PINCH}] */ this.zoomEventTypes = [ CameraEventType.RIGHT_DRAG, CameraEventType.WHEEL, CameraEventType.PINCH, ]; /** * The input that allows the user to rotate around the globe or another object. This only applies in 3D and Columbus view modes. * <p> * The type can be a {@link CameraEventType}, <code>undefined</code>, an object with <code>eventType</code> * and <code>modifier</code> properties with types <code>CameraEventType</code> and {@link KeyboardEventModifier}, * or an array of any of the preceding. * </p> * @type {CameraEventType|Array|undefined} * @default {@link CameraEventType.LEFT_DRAG} */ this.rotateEventTypes = CameraEventType.LEFT_DRAG; /** * The input that allows the user to tilt in 3D and Columbus view or twist in 2D. * <p> * The type can be a {@link CameraEventType}, <code>undefined</code>, an object with <code>eventType</code> * and <code>modifier</code> properties with types <code>CameraEventType</code> and {@link KeyboardEventModifier}, * or an array of any of the preceding. * </p> * @type {CameraEventType|Array|undefined} * @default [{@link CameraEventType.MIDDLE_DRAG}, {@link CameraEventType.PINCH}, { * eventType : {@link CameraEventType.LEFT_DRAG}, * modifier : {@link KeyboardEventModifier.CTRL} * }, { * eventType : {@link CameraEventType.RIGHT_DRAG}, * modifier : {@link KeyboardEventModifier.CTRL} * }] */ this.tiltEventTypes = [ CameraEventType.MIDDLE_DRAG, CameraEventType.PINCH, { eventType: CameraEventType.LEFT_DRAG, modifier: KeyboardEventModifier.CTRL, }, { eventType: CameraEventType.RIGHT_DRAG, modifier: KeyboardEventModifier.CTRL, }, ]; /** * The input that allows the user to change the direction the camera is viewing. This only applies in 3D and Columbus view modes. * <p> * The type can be a {@link CameraEventType}, <code>undefined</code>, an object with <code>eventType</code> * and <code>modifier</code> properties with types <code>CameraEventType</code> and {@link KeyboardEventModifier}, * or an array of any of the preceding. * </p> * @type {CameraEventType|Array|undefined} * @default { eventType : {@link CameraEventType.LEFT_DRAG}, modifier : {@link KeyboardEventModifier.SHIFT} } */ this.lookEventTypes = { eventType: CameraEventType.LEFT_DRAG, modifier: KeyboardEventModifier.SHIFT, }; const ellipsoid = scene.ellipsoid ?? Ellipsoid.default; /** * The minimum height the camera must be before picking the terrain or scene content instead of the ellipsoid. Defaults to scene.ellipsoid.minimumRadius * 0.025 when another ellipsoid than WGS84 is used. * @type {number} * @default 150000.0 or scene.ellipsoid.minimumRadius * 0.025 */ this.minimumPickingTerrainHeight = Ellipsoid.WGS84.equals(ellipsoid) ? 150000.0 : ellipsoid.minimumRadius * 0.025; this._minimumPickingTerrainHeight = this.minimumPickingTerrainHeight; /** * The minimum distance the camera must be before testing for collision with terrain when zoom with inertia. Default to scene.ellipsoid.minimumRadius * 0.00063 when another ellipsoid than WGS84 is used. * @type {number} * @default 4000.0 or scene.ellipsoid.minimumRadius * 0.00063 */ this.minimumPickingTerrainDistanceWithInertia = Ellipsoid.WGS84.equals( ellipsoid, ) ? 4000.0 : ellipsoid.minimumRadius * 0.00063; /** * The minimum height the camera must be before testing for collision with terrain. Default to scene.ellipsoid.minimumRadius * 0.0025 when another ellipsoid than WGS84 is used. * @type {number} * @default 15000.0 or scene.ellipsoid.minimumRadius * 0.0025. */ this.minimumCollisionTerrainHeight = Ellipsoid.WGS84.equals(ellipsoid) ? 15000.0 : ellipsoid.minimumRadius * 0.0025; this._minimumCollisionTerrainHeight = this.minimumCollisionTerrainHeight; /** * The minimum height the camera must be before switching from rotating a track ball to * free look when clicks originate on the sky or in space. Defaults to ellipsoid.minimumRadius * 1.175 when another ellipsoid than WGS84 is used. * @type {number} * @default 7500000.0 or scene.ellipsoid.minimumRadius * 1.175 */ this.minimumTrackBallHeight = Ellipsoid.WGS84.equals(ellipsoid) ? 7500000.0 : ellipsoid.minimumRadius * 1.175; this._minimumTrackBallHeight = this.minimumTrackBallHeight; /** * When disabled, the values of <code>maximumZoomDistance</code> and <code>minimumZoomDistance</code> are ignored. * Also used in conjunction with {@link Cesium3DTileset#enableCollision} to prevent the camera from moving through or below a 3D Tileset surface. * This may also affect clamping behavior when using {@link HeightReference.CLAMP_TO_GROUND} on 3D Tiles. * @type {boolean} * @default true */ this.enableCollisionDetection = true; /** * The angle, relative to the ellipsoid normal, restricting the maximum amount that the user can tilt the camera. If <code>undefined</code>, the angle of the camera tilt is unrestricted. * @type {number|undefined} * @default undefined * * @example * // Prevent the camera from tilting below the ellipsoid surface * viewer.scene.screenSpaceCameraController.maximumTiltAngle = Math.PI / 2.0; */ this.maximumTiltAngle = undefined; this._scene = scene; this._globe = undefined; this._ellipsoid = ellipsoid; this._lastGlobeHeight = 0.0; this._aggregator = new CameraEventAggregator(scene.canvas); this._lastInertiaSpinMovement = undefined; this._lastInertiaZoomMovement = undefined; this._lastInertiaTranslateMovement = undefined; this._lastInertiaTiltMovement = undefined; // Zoom disables tilt, spin, and translate inertia // Tilt disables spin and translate inertia this._inertiaDisablers = { _lastInertiaZoomMovement: [ "_lastInertiaSpinMovement", "_lastInertiaTranslateMovement", "_lastInertiaTiltMovement", ], _lastInertiaTiltMovement: [ "_lastInertiaSpinMovement", "_lastInertiaTranslateMovement", ], }; this._tweens = new TweenCollection(); this._tween = undefined; this._horizontalRotationAxis = undefined; this._tiltCenterMousePosition = new Cartesian2(-1.0, -1.0); this._tiltCenter = new Cartesian3(); this._rotateMousePosition = new Cartesian2(-1.0, -1.0); this._rotateStartPosition = new Cartesian3(); this._strafeStartPosition = new Cartesian3(); this._strafeMousePosition = new Cartesian2(); this._strafeEndMousePosition = new Cartesian2(); this._zoomMouseStart = new Cartesian2(-1.0, -1.0); this._zoomWorldPosition = new Cartesian3(); this._useZoomWorldPosition = false; this._panLastMousePosition = new Cartesian2(); this._panLastWorldPosition = new Cartesian3(); this._tiltCVOffMap = false; this._looking = false; this._rotating = false; this._strafing = false; this._zoomingOnVector = false; this._zoomingUnderground = false; this._rotatingZoom = false; this._adjustedHeightForTerrain = false; this._cameraUnderground = false; const projection = scene.mapProjection; this._maxCoord = projection.project( new Cartographic(Math.PI, CesiumMath.PI_OVER_TWO), ); // Constants, Make any of these public? this._rotateFactor = undefined; this._rotateRateRangeAdjustment = undefined; this._maximumRotateRate = 1.77; this._minimumRotateRate = 1.0 / 5000.0; this._minimumZoomRate = 20.0; this._maximumZoomRate = 5906376272000.0; // distance from the Sun to Pluto in meters. this._minimumUndergroundPickDistance = 2000.0; this._maximumUndergroundPickDistance = 10000.0; } function decay(time, coefficient) { if (time < 0) { return 0.0; } const tau = (1.0 - coefficient) * 25.0; return Math.exp(-tau * time); } function sameMousePosition(movement) { return Cartesian2.equalsEpsilon( movement.startPosition, movement.endPosition, CesiumMath.EPSILON14, ); } // If the time between mouse down and mouse up is not between // these thresholds, the camera will not move with inertia. // This value is probably dependent on the browser and/or the // hardware. Should be investigated further. const inertiaMaxClickTimeThreshold = 0.4; function maintainInertia( aggregator, type, modifier, decayCoef, action, object, lastMovementName, ) { let movementState = object[lastMovementName]; if (!defined(movementState)) { movementState = object[lastMovementName] = { startPosition: new Cartesian2(), endPosition: new Cartesian2(), motion: new Cartesian2(), inertiaEnabled: true, }; } const ts = aggregator.getButtonPressTime(type, modifier); const tr = aggregator.getButtonReleaseTime(type, modifier); const threshold = ts && tr && (tr.getTime() - ts.getTime()) / 1000.0; const now = new Date(); const fromNow = tr && (now.getTime() - tr.getTime()) / 1000.0; if (ts && tr && threshold < inertiaMaxClickTimeThreshold) { const d = decay(fromNow, decayCoef); const lastMovement = aggregator.getLastMovement(type, modifier); if ( !defined(lastMovement) || sameMousePosition(lastMovement) || !movementState.inertiaEnabled ) { return; } movementState.motion.x = (lastMovement.endPosition.x - lastMovement.startPosition.x) * 0.5; movementState.motion.y = (lastMovement.endPosition.y - lastMovement.startPosition.y) * 0.5; movementState.startPosition = Cartesian2.clone( lastMovement.startPosition, movementState.startPosition, ); movementState.endPosition = Cartesian2.multiplyByScalar( movementState.motion, d, movementState.endPosition, ); movementState.endPosition = Cartesian2.add( movementState.startPosition, movementState.endPosition, movementState.endPosition, ); // If value from the decreasing exponential function is close to zero, // the end coordinates may be NaN. if ( isNaN(movementState.endPosition.x) || isNaN(movementState.endPosition.y) || Cartesian2.distance( movementState.startPosition, movementState.endPosition, ) < 0.5 ) { return; } if (!aggregator.isButtonDown(type, modifier)) { const startPosition = aggregator.getStartMousePosition(type, modifier); action(object, startPosition, movementState); } } } function activateInertia(controller, inertiaStateName) { if (defined(inertiaStateName)) { // Re-enable inertia if it was disabled let movementState = controller[inertiaStateName]; if (defined(movementState)) { movementState.inertiaEnabled = true; } // Disable inertia on other movements const inertiasToDisable = controller._inertiaDisablers[inertiaStateName]; if (defined(inertiasToDisable)) { const length = inertiasToDisable.length; for (let i = 0; i < length; ++i) { movementState = controller[inertiasToDisable[i]]; if (defined(movementState)) { movementState.inertiaEnabled = false; } } } } } const scratchEventTypeArray = []; function reactToInput( controller, enabled, eventTypes, action, inertiaConstant, inertiaStateName, ) { if (!defined(eventTypes)) { return; } const aggregator = controller._aggregator; if (!Array.isArray(eventTypes)) { scratchEventTypeArray[0] = eventTypes; eventTypes = scratchEventTypeArray; } const length = eventTypes.length; for (let i = 0; i < length; ++i) { const eventType = eventTypes[i]; const type = defined(eventType.eventType) ? eventType.eventType : eventType; const modifier = eventType.modifier; const movement = aggregator.isMoving(type, modifier) && aggregator.getMovement(type, modifier); const startPosition = aggregator.getStartMousePosition(type, modifier); if (controller.enableInputs && enabled) { if (movement) { action(controller, startPosition, movement); activateInertia(controller, inertiaStateName); } else if (inertiaConstant < 1.0) { maintainInertia( aggregator, type, modifier, inertiaConstant, action, controller, inertiaStateName, ); } } } } const scratchZoomPickRay = new Ray(); const scratchPickCartesian = new Cartesian3(); const scratchZoomOffset = new Cartesian2(); const scratchZoomDirection = new Cartesian3(); const scratchCenterPixel = new Cartesian2(); const scratchCenterPosition = new Cartesian3(); const scratchPositionNormal = new Cartesian3(); const scratchPickNormal = new Cartesian3(); const scratchZoomAxis = new Cartesian3(); const scratchCameraPositionNormal = new Cartesian3(); // Scratch variables used in zooming algorithm const scratchTargetNormal = new Cartesian3(); const scratchCameraPosition = new Cartesian3(); const scratchCameraUpNormal = new Cartesian3(); const scratchCameraRightNormal = new Cartesian3(); const scratchForwardNormal = new Cartesian3(); const scratchPositionToTarget = new Cartesian3(); const scratchPositionToTargetNormal = new Cartesian3(); const scratchPan = new Cartesian3(); const scratchCenterMovement = new Cartesian3(); const scratchCenter = new Cartesian3(); const scratchCartesian = new Cartesian3(); const scratchCartesianTwo = new Cartesian3(); const scratchCartesianThree = new Cartesian3(); const scratchZoomViewOptions = { orientation: new HeadingPitchRoll(), }; function handleZoom( object, startPosition, movement, zoomFactor, distanceMeasure, unitPositionDotDirection, ) { let percentage = 1.0; if (defined(unitPositionDotDirection)) { percentage = CesiumMath.clamp( Math.abs(unitPositionDotDirection), 0.25, 1.0, ); } const diff = movement.endPosition.y - movement.startPosition.y; // distanceMeasure should be the height above the ellipsoid. // When approaching the surface, the zoomRate slows and stops minimumZoomDistance above it. const approachingSurface = diff > 0; const minHeight = approachingSurface ? object.minimumZoomDistance * percentage : 0; const maxHeight = object.maximumZoomDistance; const minDistance = distanceMeasure - minHeight; let zoomRate = zoomFactor * minDistance; zoomRate = CesiumMath.clamp( zoomRate, object._minimumZoomRate, object._maximumZoomRate, ); let rangeWindowRatio = diff / object._scene.canvas.clientHeight; rangeWindowRatio = Math.min(rangeWindowRatio, object.maximumMovementRatio); let distance = zoomRate * rangeWindowRatio; if ( object.enableCollisionDetection || object.minimumZoomDistance === 0.0 || !defined(object._globe) // look-at mode ) { if (distance > 0.0 && Math.abs(distanceMeasure - minHeight) < 1.0) { return; } if (distance < 0.0 && Math.abs(distanceMeasure - maxHeight) < 1.0) { return; } if (distanceMeasure - distance < minHeight) { distance = distanceMeasure - minHeight - 1.0; } else if (distanceMeasure - distance > maxHeight) { distance = distanceMeasure - maxHeight; } } const scene = object._scene; const camera = scene.camera; const mode = scene.mode; const orientation = scratchZoomViewOptions.orientation; orientation.heading = camera.heading; orientation.pitch = camera.pitch; orientation.roll = camera.roll; const sameStartPosition = movement.inertiaEnabled ?? Cartesian2.equals(startPosition, object._zoomMouseStart); let zoomingOnVector = object._zoomingOnVector; let rotatingZoom = object._rotatingZoom; let pickedPosition; if (!sameStartPosition) { object._zoomMouseStart = Cartesian2.clone( startPosition, object._zoomMouseStart, ); // When camera transform is set, such as tracking an entity, object._globe will be undefined, and no position should be picked if (defined(object._globe) && mode === SceneMode.SCENE2D) { pickedPosition = camera.getPickRay( startPosition, scratchZoomPickRay, ).origin; pickedPosition = Cartesian3.fromElements( pickedPosition.y, pickedPosition.z, pickedPosition.x, ); } else if (defined(object._globe)) { pickedPosition = pickPosition( object, startPosition, scratchPickCartesian, ); } if (defined(pickedPosition)) { object._useZoomWorldPosition = true; object._zoomWorldPosition = Cartesian3.clone( pickedPosition, object._zoomWorldPosition, ); } else { object._useZoomWorldPosition = false; } zoomingOnVector = object._zoomingOnVector = false; rotatingZoom = object._rotatingZoom = false; object._zoomingUnderground = object._cameraUnderground; } if (!object._useZoomWorldPosition) { camera.zoomIn(distance); return; } let zoomOnVector = mode === SceneMode.COLUMBUS_VIEW; if (camera.positionCartographic.height < 2000000) { rotatingZoom = true; } if (!sameStartPosition || rotatingZoom) { if (mode === SceneMode.SCENE2D) { const worldPosition = object._zoomWorldPosition; const endPosition = camera.position; if ( !Cartesian3.equals(worldPosition, endPosition) && camera.positionCartographic.height < object._maxCoord.x * 2.0 ) { const savedX = camera.position.x; const direction = Cartesian3.subtract( worldPosition, endPosition, scratchZoomDirection, ); Cartesian3.normalize(direction, direction); const d = (Cartesian3.distance(worldPosition, endPosition) * distance) / (camera.getMagnitude() * 0.5); camera.move(direction, d * 0.5); if ( (camera.position.x < 0.0 && savedX > 0.0) || (camera.position.x > 0.0 && savedX < 0.0) ) { pickedPosition = camera.getPickRay( startPosition, scratchZoomPickRay, ).origin; pickedPosition = Cartesian3.fromElements( pickedPosition.y, pickedPosition.z, pickedPosition.x, ); object._zoomWorldPosition = Cartesian3.clone( pickedPosition, object._zoomWorldPosition, ); } } } else if (mode === SceneMode.SCENE3D) { const cameraPositionNormal = Cartesian3.normalize( camera.position, scratchCameraPositionNormal, ); if ( object._cameraUnderground || object._zoomingUnderground || (camera.positionCartographic.height < 3000.0 && Math.abs(Cartesian3.dot(camera.direction, cameraPositionNormal)) < 0.6) ) { zoomOnVector = true; } else { const canvas = scene.canvas; const centerPixel = scratchCenterPixel; centerPixel.x = canvas.clientWidth / 2; centerPixel.y = canvas.clientHeight / 2; const centerPosition = pickPosition( object, centerPixel, scratchCenterPosition, ); // If centerPosition is not defined, it means the globe does not cover the center position of screen if (!defined(centerPosition)) { zoomOnVector = true; } else if (camera.positionCartographic.height < 1000000) { // The math in the else block assumes the camera // points toward the earth surface, so we check it here. // Theoretically, we should check for 90 degree, but it doesn't behave well when parallel // to the earth surface if (Cartesian3.dot(camera.direction, cameraPositionNormal) >= -0.5) { zoomOnVector = true; } else { const cameraPosition = scratchCameraPosition; Cartesian3.clone(camera.position, cameraPosition); const target = object._zoomWorldPosition; let targetNormal = scratchTargetNormal; targetNormal = Cartesian3.normalize(target, targetNormal); if (Cartesian3.dot(targetNormal, cameraPositionNormal) < 0.0) { return; } const center = scratchCenter; const forward = scratchForwardNormal; Cartesian3.clone(camera.direction, forward); Cartesian3.add( cameraPosition, Cartesian3.multiplyByScalar(forward, 1000, scratchCartesian), center, ); const positionToTarget = scratchPositionToTarget; const positionToTargetNormal = scratchPositionToTargetNormal; Cartesian3.subtract(target, cameraPosition, positionToTarget); Cartesian3.normalize(positionToTarget, positionToTargetNormal); const alphaDot = Cartesian3.dot( cameraPositionNormal, positionToTargetNormal, ); if (alphaDot >= 0.0) { // We zoomed past the target, and this zoom is not valid anymore. // This line causes the next zoom movement to pick a new starting point. object._zoomMouseStart.x = -1; return; } const alpha = Math.acos(-alphaDot); const cameraDistance = Cartesian3.magnitude(cameraPosition); const targetDistance = Cartesian3.magnitude(target); const remainingDistance = cameraDistance - distance; const positionToTargetDistance = Cartesian3.magnitude(positionToTarget); const gamma = Math.asin( CesiumMath.clamp( (positionToTargetDistance / targetDistance) * Math.sin(alpha), -1.0, 1.0, ), ); const delta = Math.asin( CesiumMath.clamp( (remainingDistance / targetDistance) * Math.sin(alpha), -1.0, 1.0, ), ); const beta = gamma - delta + alpha; const up = scratchCameraUpNormal; Cartesian3.normalize(cameraPosition, up); let right = scratchCameraRightNormal; right = Cartesian3.cross(positionToTargetNormal, up, right); right = Cartesian3.normalize(right, right); Cartesian3.normalize( Cartesian3.cross(up, right, scratchCartesian), forward, ); // Calculate new position to move to Cartesian3.multiplyByScalar( Cartesian3.normalize(center, scratchCartesian), Cartesian3.magnitude(center) - distance, center, ); Cartesian3.normalize(cameraPosition, cameraPosition); Cartesian3.multiplyByScalar( cameraPosition, remainingDistance, cameraPosition, ); // Pan const pMid = scratchPan; Cartesian3.multiplyByScalar( Cartesian3.add( Cartesian3.multiplyByScalar( up, Math.cos(beta) - 1, scratchCartesianTwo, ), Cartesian3.multiplyByScalar( forward, Math.sin(beta), scratchCartesianThree, ), scratchCartesian, ), remainingDistance, pMid, ); Cartesian3.add(cameraPosition, pMid, cameraPosition); Cartesian3.normalize(center, up); Cartesian3.normalize( Cartesian3.cross(up, right, scratchCartesian), forward, ); const cMid = scratchCenterMovement; Cartesian3.multiplyByScalar( Cartesian3.add( Cartesian3.multiplyByScalar( up, Math.cos(beta) - 1, scratchCartesianTwo, ), Cartesian3.multiplyByScalar( forward, Math.sin(beta), scratchCartesianThree, ), scratchCartesian, ), Cartesian3.magnitude(center), cMid, ); Cartesian3.add(center, cMid, center); // Update camera // Set new position Cartesian3.clone(cameraPosition, camera.position); // Set new direction Cartesian3.normalize( Cartesian3.subtract(center, cameraPosition, scratchCartesian), camera.direction, ); Cartesian3.clone(camera.direction, camera.direction); // Set new right & up vectors Cartesian3.cross(camera.direction, camera.up, camera.right); Cartesian3.cross(camera.right, camera.direction, camera.up); camera.setView(scratchZoomViewOptions); return; } } else { const positionNormal = Cartesian3.normalize( centerPosition, scratchPositionNormal, ); const pickedNormal = Cartesian3.normalize( object._zoomWorldPosition, scratchPickNormal, ); const dotProduct = Cartesian3.dot(pickedNormal, positionNormal); if (dotProduct > 0.0 && dotProduct < 1.0) { const angle = CesiumMath.acosClamped(dotProduct); const axis = Cartesian3.cross( pickedNormal, positionNormal, scratchZoomAxis, ); const denom = Math.abs(angle) > CesiumMath.toRadians(20.0) ? camera.positionCartographic.height * 0.75 : camera.positionCartographic.height - distance; const scalar = distance / denom; camera.rotate(axis, angle * scalar); } } } } object._rotatingZoom = !zoomOnVector; } if ((!sameStartPosition && zoomOnVector) || zoomingOnVector) { let ray; const zoomMouseStart = SceneTransforms.worldToWindowCoordinates( scene, object._zoomWorldPosition, scratchZoomOffset, ); if ( mode !== SceneMode.COLUMBUS_VIEW && Cartesian2.equals(startPosition, object._zoomMouseStart) && defined(zoomMouseStart) ) { ray = camera.getPickRay(zoomMouseStart, scratchZoomPickRay); } else { ray = camera.getPickRay(startPosition, scratchZoomPickRay); } const rayDirection = ray.direction; if (mode === SceneMode.COLUMBUS_VIEW || mode === SceneMode.SCENE2D) { Cartesian3.fromElements( rayDirection.y, rayDirection.z, rayDirection.x, rayDirection, ); } camera.move(rayDirection, distance); object._zoomingOnVector = true; } else { camera.zoomIn(distance); } if (!object._cameraUnderground) { camera.setView(scratchZoomViewOptions); } } const translate2DStart = new Ray(); const translate2DEnd = new Ray(); const scratchTranslateP0 = new Cartesian3(); function translate2D(controller, startPosition, movement) { const scene = controller._scene; const camera = scene.camera; let start = camera.getPickRay( movement.startPosition, translate2DStart, ).origin; let end = camera.getPickRay(movement.endPosition, translate2DEnd).origin; start = Cartesian3.fromElements(start.y, start.z, start.x, start); end = Cartesian3.fromElements(end.y, end.z, end.x, end); const direction = Cartesian3.subtract(start, end, scratchTranslateP0); const distance = Cartesian3.magnitude(direction); if (distance > 0.0) { Cartesian3.normalize(direction, direction); camera.move(direction, distance); } } function zoom2D(controller, startPosition, movement) { if (defined(movement.distance)) { movement = movement.distance; } const scene = controller._scene; const camera = scene.camera; handleZoom( controller, startPosition, movement, controller.zoomFactor, camera.getMagnitude(), ); } const twist2DStart = new Cartesian2(); const twist2DEnd = new Cartesian2(); function twist2D(controller, startPosition, movement) { if (defined(movement.angleAndHeight)) { singleAxisTwist2D(controller, startPosition, movement.angleAndHeight); return; } const scene = controller._scene; const camera = scene.camera; const canvas = scene.canvas; const width = canvas.clientWidth; const height = canvas.clientHeight; let start = twist2DStart; start.x = (2.0 / width) * movement.startPosition.x - 1.0; start.y = (2.0 / height) * (height - movement.startPosition.y) - 1.0; start = Cartesian2.normalize(start, start); let end = twist2DEnd; end.x = (2.0 / width) * movement.endPosition.x - 1.0; end.y = (2.0 / height) * (height - movement.endPosition.y) - 1.0; end = Cartesian2.normalize(end, end); let startTheta = CesiumMath.acosClamped(start.x); if (start.y < 0) { startTheta = CesiumMath.TWO_PI - startTheta; } let endTheta = CesiumMath.acosClamped(end.x); if (end.y < 0) { endTheta = CesiumMath.TWO_PI - endTheta; } const theta = endTheta - startTheta; camera.twistRight(theta); } function singleAxisTwist2D(controller, startPosition, movement) { let rotateRate = controller._rotateFactor * controller._rotateRateRangeAdjustment; if (rotateRate > controller._maximumRotateRate) { rotateRate = controller._maximumRotateRate; } if (rotateRate < controller._minimumRotateRate) { rotateRate = controller._minimumRotateRate; } const scene = controller._scene; const camera = scene.camera; const canvas = scene.canvas; let phiWindowRatio = (movement.endPosition.x - movement.startPosition.x) / canvas.clientWidth; phiWindowRatio = Math.min(phiWindowRatio, controller.maximumMovementRatio); const deltaPhi = rotateRate * phiWindowRatio * Math.PI * 4.0; camera.twistRight(deltaPhi); } function update2D(controller) { const rotatable2D = controller._scene.mapMode2D === MapMode2D.ROTATE; if (!Matrix4.equals(Matrix4.IDENTITY, controller._scene.camera.transform)) { reactToInput( controller, controller.enableZoom, controller.zoomEventTypes, zoom2D, controller.inertiaZoom, "_lastInertiaZoomMovement", ); if (rotatable2D) { reactToInput( controller, controller.enableRotate, controller.translateEventTypes, twist2D, controller.inertiaSpin, "_lastInertiaSpinMovement", ); } } else { reactToInput( controller, controller.enableTranslate, controller.translateEventTypes, translate2D, controller.inertiaTranslate, "_lastInertiaTranslateMovement", ); reactToInput( controller, controller.enableZoom, controller.zoomEventTypes, zoom2D, controller.inertiaZoom, "_lastInertiaZoomMovement", ); if (rotatable2D) { reactToInput( controller, controller.enableRotate, controller.tiltEventTypes, twist2D, controller.inertiaSpin, "_lastInertiaTiltMovement", ); } } } const pickGlobeScratchRay = new Ray(); const scratchDepthIntersection = new Cartesian3(); const scratchRayIntersection = new Cartesian3(); function pickPosition(controller, mousePosition, result) { const scene = controller._scene; const globe = controller._globe; const camera = scene.camera; let depthIntersection; if (scene.pickPositionSupported) { depthIntersection = scene.pickPositionWorldCoordinates( mousePosition, scratchDepthIntersection, ); } if (!defined(globe)) { return Cartesian3.clone(depthIntersection, result); } const cullBackFaces = !controller._cameraUnderground; const ray = camera.getPickRay(mousePosition, pickGlobeScratchRay); const rayIntersection = globe.pickWorldCoordinates( ray, scene, cullBackFaces, scratchRayIntersection, ); const pickDistance = defined(depthIntersection) ? Cartesian3.distance(depthIntersection, camera.positionWC) : Number.POSITIVE_INFINITY; const rayDistance = defined(rayIntersection) ? Cartesian3.distance(rayIntersection, camera.positionWC) : Number.POSITIVE_INFINITY; if (pickDistance < rayDistance) { return Cartesian3.clone(depthIntersection, result); } return Cartesian3.clone(rayIntersection, result); } const scratchDistanceCartographic = new Cartographic(); function getDistanceFromSurface(controller) { const ellipsoid = controller._ellipsoid; const scene = controller._scene; const camera = scene.camera; const mode = scene.mode; let height = 0.0; if (mode === SceneMode.SCENE3D) { const cartographic = ellipsoid.cartesianToCartographic( camera.position, scratchDistanceCartographic, ); if (defined(cartographic)) { height = cartographic.height; } } else { height = camera.position.z; } const globeHeight = controller._scene.globeHeight ?? 0.0; const distanceFromSurface = Math.abs(globeHeight - height); return distanceFromSurface; } const scratchSurfaceNormal = new Cartesian3(); function getZoomDistanceUnderground(controller, ray) { const origin = ray.origin; const direction = ray.direction; const distanceFromSurface = getDistanceFromSurface(controller); // Weight zoom distance based on how strongly the pick ray is pointing inward. // Geocentric normal is accurate enough for these purposes const surfaceNormal = Cartesian3.normalize(origin, scratchSurfaceNormal); let strength = Math.abs(Cartesian3.dot(surfaceNormal, direction)); strength = Math.max(strength, 0.5) * 2.0; return distanceFromSurface * strength; } function getTiltCenterUnderground(controller, ray, pickedPosition, result) { let distance = Cartesian3.distance(ray.origin, pickedPosition); const distanceFromSurface = getDistanceFromSurface(controller); const maximumDistance = CesiumMath.clamp( distanceFromSurface * 5.0, controller._minimumUndergroundPickDistance, controller._maximumUndergroundPickDistance, ); if (distance > maximumDistance) { // Simulate look-at behavior by tilting around a small invisible sphere distance = Math.min(distance, distanceFromSurface / 5.0); distance = Math.max(distance, 100.0); } return Ray.getPoint(ray, distance, result); } function getStrafeStartPositionUnderground( controller, ray, pickedPosition, result, ) { let distance; if (!defined(pickedPosition)) { distance = getDistanceFromSurface(controller); } else { distance = Cartesian3.distance(ray.origin, pickedPosition); if (distance > controller._maximumUndergroundPickDistance) { // If the picked position is too far away set the strafe speed based on the // camera's height from the globe surface distance = getDistanceFromSurface(controller); } } return Ray.getPoint(ray, distance, result); } const scratchInertialDelta = new Cartesian2(); function continueStrafing(controller, movement) { // Update the end position continually based on the inertial delta const originalEndPosition = movement.endPosition; const inertialDelta = Cartesian2.subtract( movement.endPosition, movement.startPosition, scratchInertialDelta, ); const endPosition = controller._strafeEndMousePosition; Cartesian2.add(endPosition, inertialDelta, endPosition); movement.endPosition = endPosition; strafe(controller, movement, controller._strafeStartPosition); movement.endPosition = originalEndPosition; } const translateCVStartRay = new Ray(); const translateCVEndRay = new Ray(); const translateCVStartPos = new Cartesian3(); const translateCVEndPos = new Cartesian3(); const translateCVDifference = new Cartesian3(); const translateCVOrigin = new Cartesian3(); const translateCVPlane = new Plane(Cartesian3.UNIT_X, 0.0); const translateCVStartMouse = new Cartesian2(); const translateCVEndMouse = new Cartesian2(); function translateCV(controller, startPosition, movement) { if (!Cartesian3.equals(startPosition, controller._translateMousePosition)) { controller._looking = false; } if (!Cartesian3.equals(startPosition, controller._strafeMousePosition)) { controller._strafing = false; } if (controller._looking) { look3D(controller, startPosition, movement); return; } if (controller._strafing) { continueStrafing(controller, movement); return; } const scene = controller._scene; const camera = scene.camera; const cameraUnderground = controller._cameraUnderground; const startMouse = Cartesian2.clone( movement.startPosition, translateCVStartMouse, ); const endMouse = Cartesian2.clone(movement.endPosition, translateCVEndMouse); let startRay = camera.getPickRay(startMouse, translateCVStartRay); const origin = Cartesian3.clone(Cartesian3.ZERO, translateCVOrigin); const normal = Cartesian3.UNIT_X; let globePos; if (camera.position.z < controller._minimumPickingTerrainHeight) { globePos = pickPosition(controller, startMouse, translateCVStartPos); if (defined(globePos)) { origin.x = globePos.x; } } if ( cameraUnderground || (origin.x > camera.position.z && defined(globePos)) ) { let pickPosition = globePos; if (cameraUnderground) { pickPosition = getStrafeStartPositionUnderground( controller, startRay, globePos, translateCVStartPos, ); } Cartesian2.clone(startPosition, controller._strafeMousePosition); Cartesian2.clone(startPosition, controller._strafeEndMousePosition); Cartesian3.clone(pickPosition, controller._strafeStartPosition); controller._strafing = true; strafe(controller, movement, controller._strafeStartPosition); return; } const plane = Plane.fromPointNormal(origin, normal, translateCVPlane); startRay = camera.getPickRay(startMouse, translateCVStartRay); const startPlanePos = IntersectionTests.rayPlane( startRay, plane, translateCVStartPos, ); const endRay = camera.getPickRay(endMouse, translateCVEndRay); const endPlanePos = IntersectionTests.rayPlane( endRay, plane, translateCVEndPos, ); if (!defined(startPlanePos) || !defined(endPlanePos)) { controller._looking = true; look3D(controller, startPosition, movement); Cartesian2.clone(startPosition, controller._translateMousePosition); return; } const diff = Cartesian3.subtract( startPlanePos, endPlanePos, translateCVDifference, ); const temp = diff.x; diff.x = diff.y; diff.y = diff.z; diff.z = temp; const mag = Cartesian3.magnitude(diff); if (mag > CesiumMath.EPSILON6) { Cartesian3.normalize(diff, diff); camera.move(diff, mag); } } const rotateCVWindowPos = new Cartesian2(); const rotateCVWindowRay = new Ray(); const rotateCVCenter = new Cartesian3(); const rotateCVVerticalCenter = new Cartesian3(); const rotateCVTransform = new Matrix4(); const rotateCVVerticalTransform = new Matrix4(); const rotateCVOrigin = new Cartesian3(); const rotateCVPlane = new Plane(Cartesian3.UNIT_X, 0.0); const rotateCVCartesian3 = new Cartesian3(); const rotateCVCart = new Cartographic(); const rotateCVOldTransform = new Matrix4(); const rotateCVQuaternion = new Quaternion(); const rotateCVMatrix = new Matrix3(); const tilt3DCartesian3 = new Cartesian3(); function rotateCV(controller, startPosition, movement) { if (defined(movement.angleAndHeight)) { movement = movement.angleAndHeight; } if (!Cartesian2.equals(startPosition, controller._tiltCenterMousePosition)) { controller._tiltCVOffMap = false; controller._looking = false; } if (controller._looking) { look3D(controller, startPosition, movement); return; } const scene = controller._scene; const camera = scene.camera; if ( controller._tiltCVOffMap || !controller.onMap() || Math.abs(camera.position.z) > controller._minimumPickingTerrainHeight ) { controller._tiltCVOffMap = true; rotateCVOnPlane(controller, startPosition, movement); } else { rotateCVOnTerrain(controller, startPosition, movement); } } function rotateCVOnPlane(controller, startPosition, movement) { const scene = controller._scene; const camera = scene.camera; const canvas = scene.canvas; const windowPosition = rotateCVWindowPos; windowPosition.x = canvas.clientWidth / 2; windowPosition.y = canvas.clientHeight / 2; const ray = camera.getPickRay(windowPosition, rotateCVWindowRay); const normal = Cartesian3.UNIT_X; const position = ray.origin; const direction = ray.direction; let scalar; const normalDotDirection = Cartesian3.dot(normal, direction); if (Math.abs(normalDotDirection) > CesiumMath.EPSILON6) { scalar = -Cartesian3.dot(normal, position) / normalDotDirection; } if (!defined(scalar) || scalar <= 0.0) { controller._looking = true; look3D(controller, startPosition, movement); Cartesian2.clone(startPosition, controller._tiltCenterMousePosition); return; } const center = Cartesian3.multiplyByScalar(direction, scalar, rotateCVCenter); Cartesian3.add(position, center, center); const projection = scene.mapProjection; const ellipsoid = projection.ellipsoid; Cartesian3.fromElements(center.y, center.z, center.x, center); const cart = projection.unproject(center, rotateCVCart); ellipsoid.cartographicToCartesian(cart, center); const transform = Transforms.eastNorthUpToFixedFrame( center, ellipsoid, rotateCVTransform, ); const oldGlobe = controller._globe; const oldEllipsoid = controller._ellipsoid; controller._globe = undefined; controller._ellipsoid = Ellipsoid.UNIT_SPHERE; controller._rotateFactor = 1.0; controller._rotateRateRangeAdjustment = 1.0; const oldTransform = Matrix4.clone(camera.transform, rotateCVOldTransform); camera._setTransform(transform); rotate3D(controller, startPosition, movement, Cartesian3.UNIT_Z); camera._setTransform(oldTransform); controller._globe = oldGlobe; controller._ellipsoid = oldEllipsoid; const radius = oldEllipsoid.maximumRadius; controller._rotateFactor = 1.0 / radius; controller._rotateRateRangeAdjustment = radius; } function rotateCVOnTerrain(controller, startPosition, movement) { const scene = controller._scene; const camera = scene.camera; const cameraUnderground = controller._cameraUnderground; let center; let ray; const normal = Cartesian3.UNIT_X; if (Cartesian2.equals(startPosition, controller._tiltCenterMousePosition)) { center = Cartesian3.clone(controller._tiltCenter, rotateCVCenter); } else { if (camera.position.z < controller._minimumPickingTerrainHeight) { center = pickPosition(controller, startPosition, rotateCVCenter); } if (!defined(center)) { ray = camera.getPickRay(startPosition, rotateCVWindowRay); const position = ray.origin; const direction = ray.direction; let scalar; const normalDotDirection = Cartesian3.dot(normal, direction); if (Math.abs(normalDotDirection) > CesiumMath.EPSILON6) { scalar = -Cartesian3.dot(normal, position) / normalDotDirection; } if (!defined(scalar) || scalar <= 0.0) { controller._looking = true; look3D(controller, startPosition, mov