UNPKG

@cesium/engine

Version:

CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.

600 lines (544 loc) 18.8 kB
import arrayRemoveDuplicates from "./arrayRemoveDuplicates.js"; import BoundingSphere from "./BoundingSphere.js"; import Cartesian3 from "./Cartesian3.js"; import Check from "./Check.js"; import ComponentDatatype from "./ComponentDatatype.js"; import CornerType from "./CornerType.js"; import CorridorGeometryLibrary from "./CorridorGeometryLibrary.js"; import Frozen from "./Frozen.js"; import defined from "./defined.js"; import Ellipsoid from "./Ellipsoid.js"; import Geometry from "./Geometry.js"; import GeometryAttribute from "./GeometryAttribute.js"; import GeometryAttributes from "./GeometryAttributes.js"; import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js"; import IndexDatatype from "./IndexDatatype.js"; import CesiumMath from "./Math.js"; import PolygonPipeline from "./PolygonPipeline.js"; import PrimitiveType from "./PrimitiveType.js"; const cartesian1 = new Cartesian3(); const cartesian2 = new Cartesian3(); const cartesian3 = new Cartesian3(); function scaleToSurface(positions, ellipsoid) { for (let i = 0; i < positions.length; i++) { positions[i] = ellipsoid.scaleToGeodeticSurface(positions[i], positions[i]); } return positions; } function combine(computedPositions, cornerType) { const wallIndices = []; const positions = computedPositions.positions; const corners = computedPositions.corners; const endPositions = computedPositions.endPositions; const attributes = new GeometryAttributes(); let corner; let leftCount = 0; let rightCount = 0; let i; let indicesLength = 0; let length; for (i = 0; i < positions.length; i += 2) { length = positions[i].length - 3; leftCount += length; //subtracting 3 to account for duplicate points at corners indicesLength += (length / 3) * 4; rightCount += positions[i + 1].length - 3; } leftCount += 3; //add back count for end positions rightCount += 3; for (i = 0; i < corners.length; i++) { corner = corners[i]; const leftSide = corners[i].leftPositions; if (defined(leftSide)) { length = leftSide.length; leftCount += length; indicesLength += (length / 3) * 2; } else { length = corners[i].rightPositions.length; rightCount += length; indicesLength += (length / 3) * 2; } } const addEndPositions = defined(endPositions); let endPositionLength; if (addEndPositions) { endPositionLength = endPositions[0].length - 3; leftCount += endPositionLength; rightCount += endPositionLength; endPositionLength /= 3; indicesLength += endPositionLength * 4; } const size = leftCount + rightCount; const finalPositions = new Float64Array(size); let front = 0; let back = size - 1; let UL, LL, UR, LR; let rightPos, leftPos; const halfLength = endPositionLength / 2; const indices = IndexDatatype.createTypedArray(size / 3, indicesLength + 4); let index = 0; indices[index++] = front / 3; indices[index++] = (back - 2) / 3; if (addEndPositions) { // add rounded end wallIndices.push(front / 3); leftPos = cartesian1; rightPos = cartesian2; const firstEndPositions = endPositions[0]; for (i = 0; i < halfLength; i++) { leftPos = Cartesian3.fromArray( firstEndPositions, (halfLength - 1 - i) * 3, leftPos, ); rightPos = Cartesian3.fromArray( firstEndPositions, (halfLength + i) * 3, rightPos, ); CorridorGeometryLibrary.addAttribute(finalPositions, rightPos, front); CorridorGeometryLibrary.addAttribute( finalPositions, leftPos, undefined, back, ); LL = front / 3; LR = LL + 1; UL = (back - 2) / 3; UR = UL - 1; indices[index++] = UL; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; front += 3; back -= 3; } } let posIndex = 0; let rightEdge = positions[posIndex++]; //add first two edges let leftEdge = positions[posIndex++]; finalPositions.set(rightEdge, front); finalPositions.set(leftEdge, back - leftEdge.length + 1); length = leftEdge.length - 3; wallIndices.push(front / 3, (back - 2) / 3); for (i = 0; i < length; i += 3) { LL = front / 3; LR = LL + 1; UL = (back - 2) / 3; UR = UL - 1; indices[index++] = UL; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; front += 3; back -= 3; } for (i = 0; i < corners.length; i++) { let j; corner = corners[i]; const l = corner.leftPositions; const r = corner.rightPositions; let start; let outsidePoint = cartesian3; if (defined(l)) { back -= 3; start = UR; wallIndices.push(LR); for (j = 0; j < l.length / 3; j++) { outsidePoint = Cartesian3.fromArray(l, j * 3, outsidePoint); indices[index++] = start - j - 1; indices[index++] = start - j; CorridorGeometryLibrary.addAttribute( finalPositions, outsidePoint, undefined, back, ); back -= 3; } wallIndices.push(start - Math.floor(l.length / 6)); if (cornerType === CornerType.BEVELED) { wallIndices.push((back - 2) / 3 + 1); } front += 3; } else { front += 3; start = LR; wallIndices.push(UR); for (j = 0; j < r.length / 3; j++) { outsidePoint = Cartesian3.fromArray(r, j * 3, outsidePoint); indices[index++] = start + j; indices[index++] = start + j + 1; CorridorGeometryLibrary.addAttribute( finalPositions, outsidePoint, front, ); front += 3; } wallIndices.push(start + Math.floor(r.length / 6)); if (cornerType === CornerType.BEVELED) { wallIndices.push(front / 3 - 1); } back -= 3; } rightEdge = positions[posIndex++]; leftEdge = positions[posIndex++]; rightEdge.splice(0, 3); //remove duplicate points added by corner leftEdge.splice(leftEdge.length - 3, 3); finalPositions.set(rightEdge, front); finalPositions.set(leftEdge, back - leftEdge.length + 1); length = leftEdge.length - 3; for (j = 0; j < leftEdge.length; j += 3) { LR = front / 3; LL = LR - 1; UR = (back - 2) / 3; UL = UR + 1; indices[index++] = UL; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; front += 3; back -= 3; } front -= 3; back += 3; wallIndices.push(front / 3, (back - 2) / 3); } if (addEndPositions) { // add rounded end front += 3; back -= 3; leftPos = cartesian1; rightPos = cartesian2; const lastEndPositions = endPositions[1]; for (i = 0; i < halfLength; i++) { leftPos = Cartesian3.fromArray( lastEndPositions, (endPositionLength - i - 1) * 3, leftPos, ); rightPos = Cartesian3.fromArray(lastEndPositions, i * 3, rightPos); CorridorGeometryLibrary.addAttribute( finalPositions, leftPos, undefined, back, ); CorridorGeometryLibrary.addAttribute(finalPositions, rightPos, front); LR = front / 3; LL = LR - 1; UR = (back - 2) / 3; UL = UR + 1; indices[index++] = UL; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; front += 3; back -= 3; } wallIndices.push(front / 3); } else { wallIndices.push(front / 3, (back - 2) / 3); } indices[index++] = front / 3; indices[index++] = (back - 2) / 3; attributes.position = new GeometryAttribute({ componentDatatype: ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: finalPositions, }); return { attributes: attributes, indices: indices, wallIndices: wallIndices, }; } function computePositionsExtruded(params) { const ellipsoid = params.ellipsoid; const computedPositions = CorridorGeometryLibrary.computePositions(params); const attr = combine(computedPositions, params.cornerType); const wallIndices = attr.wallIndices; const height = params.height; const extrudedHeight = params.extrudedHeight; const attributes = attr.attributes; const indices = attr.indices; let positions = attributes.position.values; let length = positions.length; let extrudedPositions = new Float64Array(length); extrudedPositions.set(positions); const newPositions = new Float64Array(length * 2); positions = PolygonPipeline.scaleToGeodeticHeight( positions, height, ellipsoid, ); extrudedPositions = PolygonPipeline.scaleToGeodeticHeight( extrudedPositions, extrudedHeight, ellipsoid, ); newPositions.set(positions); newPositions.set(extrudedPositions, length); attributes.position.values = newPositions; length /= 3; if (defined(params.offsetAttribute)) { let applyOffset = new Uint8Array(length * 2); if (params.offsetAttribute === GeometryOffsetAttribute.TOP) { applyOffset = applyOffset.fill(1, 0, length); } else { const applyOffsetValue = params.offsetAttribute === GeometryOffsetAttribute.NONE ? 0 : 1; applyOffset = applyOffset.fill(applyOffsetValue); } attributes.applyOffset = new GeometryAttribute({ componentDatatype: ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 1, values: applyOffset, }); } let i; const iLength = indices.length; const newIndices = IndexDatatype.createTypedArray( newPositions.length / 3, (iLength + wallIndices.length) * 2, ); newIndices.set(indices); let index = iLength; for (i = 0; i < iLength; i += 2) { // bottom indices const v0 = indices[i]; const v1 = indices[i + 1]; newIndices[index++] = v0 + length; newIndices[index++] = v1 + length; } let UL, LL; for (i = 0; i < wallIndices.length; i++) { //wall indices UL = wallIndices[i]; LL = UL + length; newIndices[index++] = UL; newIndices[index++] = LL; } return { attributes: attributes, indices: newIndices, }; } /** * A description of a corridor outline. * * @alias CorridorOutlineGeometry * @constructor * * @param {object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of positions that define the center of the corridor outline. * @param {number} options.width The distance between the edges of the corridor outline. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.default] The ellipsoid to be used as a reference. * @param {number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer. * @param {number} [options.height=0] The distance in meters between the positions and the ellipsoid surface. * @param {number} [options.extrudedHeight] The distance in meters between the extruded face and the ellipsoid surface. * @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners. * * @see CorridorOutlineGeometry.createGeometry * * @example * const corridor = new Cesium.CorridorOutlineGeometry({ * positions : Cesium.Cartesian3.fromDegreesArray([-72.0, 40.0, -70.0, 35.0]), * width : 100000 * }); */ function CorridorOutlineGeometry(options) { options = options ?? Frozen.EMPTY_OBJECT; const positions = options.positions; const width = options.width; //>>includeStart('debug', pragmas.debug); Check.typeOf.object("options.positions", positions); Check.typeOf.number("options.width", width); //>>includeEnd('debug'); const height = options.height ?? 0.0; const extrudedHeight = options.extrudedHeight ?? height; this._positions = positions; this._ellipsoid = Ellipsoid.clone(options.ellipsoid ?? Ellipsoid.default); this._width = width; this._height = Math.max(height, extrudedHeight); this._extrudedHeight = Math.min(height, extrudedHeight); this._cornerType = options.cornerType ?? CornerType.ROUNDED; this._granularity = options.granularity ?? CesiumMath.RADIANS_PER_DEGREE; this._offsetAttribute = options.offsetAttribute; this._workerName = "createCorridorOutlineGeometry"; /** * The number of elements used to pack the object into an array. * @type {number} */ this.packedLength = 1 + positions.length * Cartesian3.packedLength + Ellipsoid.packedLength + 6; } /** * Stores the provided instance into the provided array. * * @param {CorridorOutlineGeometry} value The value to pack. * @param {number[]} array The array to pack into. * @param {number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {number[]} The array that was packed into */ CorridorOutlineGeometry.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("value", value); Check.typeOf.object("array", array); //>>includeEnd('debug'); startingIndex = startingIndex ?? 0; const positions = value._positions; const length = positions.length; array[startingIndex++] = length; for (let i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) { Cartesian3.pack(positions[i], array, startingIndex); } Ellipsoid.pack(value._ellipsoid, array, startingIndex); startingIndex += Ellipsoid.packedLength; array[startingIndex++] = value._width; array[startingIndex++] = value._height; array[startingIndex++] = value._extrudedHeight; array[startingIndex++] = value._cornerType; array[startingIndex++] = value._granularity; array[startingIndex] = value._offsetAttribute ?? -1; return array; }; const scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE); const scratchOptions = { positions: undefined, ellipsoid: scratchEllipsoid, width: undefined, height: undefined, extrudedHeight: undefined, cornerType: undefined, granularity: undefined, offsetAttribute: undefined, }; /** * Retrieves an instance from a packed array. * * @param {number[]} array The packed array. * @param {number} [startingIndex=0] The starting index of the element to be unpacked. * @param {CorridorOutlineGeometry} [result] The object into which to store the result. * @returns {CorridorOutlineGeometry} The modified result parameter or a new CorridorOutlineGeometry instance if one was not provided. */ CorridorOutlineGeometry.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.typeOf.object("array", array); //>>includeEnd('debug'); startingIndex = startingIndex ?? 0; const length = array[startingIndex++]; const positions = new Array(length); for (let i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) { positions[i] = Cartesian3.unpack(array, startingIndex); } const ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid); startingIndex += Ellipsoid.packedLength; const width = array[startingIndex++]; const height = array[startingIndex++]; const extrudedHeight = array[startingIndex++]; const cornerType = array[startingIndex++]; const granularity = array[startingIndex++]; const offsetAttribute = array[startingIndex]; if (!defined(result)) { scratchOptions.positions = positions; scratchOptions.width = width; scratchOptions.height = height; scratchOptions.extrudedHeight = extrudedHeight; scratchOptions.cornerType = cornerType; scratchOptions.granularity = granularity; scratchOptions.offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return new CorridorOutlineGeometry(scratchOptions); } result._positions = positions; result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid); result._width = width; result._height = height; result._extrudedHeight = extrudedHeight; result._cornerType = cornerType; result._granularity = granularity; result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return result; }; /** * Computes the geometric representation of a corridor, including its vertices, indices, and a bounding sphere. * * @param {CorridorOutlineGeometry} corridorOutlineGeometry A description of the corridor. * @returns {Geometry|undefined} The computed vertices and indices. */ CorridorOutlineGeometry.createGeometry = function (corridorOutlineGeometry) { let positions = corridorOutlineGeometry._positions; const width = corridorOutlineGeometry._width; const ellipsoid = corridorOutlineGeometry._ellipsoid; positions = scaleToSurface(positions, ellipsoid); const cleanPositions = arrayRemoveDuplicates( positions, Cartesian3.equalsEpsilon, ); if (cleanPositions.length < 2 || width <= 0) { return; } const height = corridorOutlineGeometry._height; const extrudedHeight = corridorOutlineGeometry._extrudedHeight; const extrude = !CesiumMath.equalsEpsilon( height, extrudedHeight, 0, CesiumMath.EPSILON2, ); const params = { ellipsoid: ellipsoid, positions: cleanPositions, width: width, cornerType: corridorOutlineGeometry._cornerType, granularity: corridorOutlineGeometry._granularity, saveAttributes: false, }; let attr; if (extrude) { params.height = height; params.extrudedHeight = extrudedHeight; params.offsetAttribute = corridorOutlineGeometry._offsetAttribute; attr = computePositionsExtruded(params); } else { const computedPositions = CorridorGeometryLibrary.computePositions(params); attr = combine(computedPositions, params.cornerType); attr.attributes.position.values = PolygonPipeline.scaleToGeodeticHeight( attr.attributes.position.values, height, ellipsoid, ); if (defined(corridorOutlineGeometry._offsetAttribute)) { const length = attr.attributes.position.values.length; const offsetValue = corridorOutlineGeometry._offsetAttribute === GeometryOffsetAttribute.NONE ? 0 : 1; const applyOffset = new Uint8Array(length / 3).fill(offsetValue); attr.attributes.applyOffset = new GeometryAttribute({ componentDatatype: ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 1, values: applyOffset, }); } } const attributes = attr.attributes; const boundingSphere = BoundingSphere.fromVertices( attributes.position.values, undefined, 3, ); return new Geometry({ attributes: attributes, indices: attr.indices, primitiveType: PrimitiveType.LINES, boundingSphere: boundingSphere, offsetAttribute: corridorOutlineGeometry._offsetAttribute, }); }; export default CorridorOutlineGeometry;