@cesium/engine
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
1,412 lines (1,309 loc) • 43.8 kB
JavaScript
import arrayRemoveDuplicates from "./arrayRemoveDuplicates.js";
import BoundingSphere from "./BoundingSphere.js";
import Cartesian3 from "./Cartesian3.js";
import Cartographic from "./Cartographic.js";
import Check from "./Check.js";
import ComponentDatatype from "./ComponentDatatype.js";
import CornerType from "./CornerType.js";
import CorridorGeometryLibrary from "./CorridorGeometryLibrary.js";
import Frozen from "./Frozen.js";
import defined from "./defined.js";
import Ellipsoid from "./Ellipsoid.js";
import Geometry from "./Geometry.js";
import GeometryAttribute from "./GeometryAttribute.js";
import GeometryAttributes from "./GeometryAttributes.js";
import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js";
import IndexDatatype from "./IndexDatatype.js";
import CesiumMath from "./Math.js";
import PolygonPipeline from "./PolygonPipeline.js";
import PrimitiveType from "./PrimitiveType.js";
import Rectangle from "./Rectangle.js";
import VertexFormat from "./VertexFormat.js";
const cartesian1 = new Cartesian3();
const cartesian2 = new Cartesian3();
const cartesian3 = new Cartesian3();
const cartesian4 = new Cartesian3();
const cartesian5 = new Cartesian3();
const cartesian6 = new Cartesian3();
const scratch1 = new Cartesian3();
const scratch2 = new Cartesian3();
function scaleToSurface(positions, ellipsoid) {
for (let i = 0; i < positions.length; i++) {
positions[i] = ellipsoid.scaleToGeodeticSurface(positions[i], positions[i]);
}
return positions;
}
function addNormals(attr, normal, left, front, back, vertexFormat) {
const normals = attr.normals;
const tangents = attr.tangents;
const bitangents = attr.bitangents;
const forward = Cartesian3.normalize(
Cartesian3.cross(left, normal, scratch1),
scratch1,
);
if (vertexFormat.normal) {
CorridorGeometryLibrary.addAttribute(normals, normal, front, back);
}
if (vertexFormat.tangent) {
CorridorGeometryLibrary.addAttribute(tangents, forward, front, back);
}
if (vertexFormat.bitangent) {
CorridorGeometryLibrary.addAttribute(bitangents, left, front, back);
}
}
function combine(computedPositions, vertexFormat, ellipsoid) {
const positions = computedPositions.positions;
const corners = computedPositions.corners;
const endPositions = computedPositions.endPositions;
const computedLefts = computedPositions.lefts;
const computedNormals = computedPositions.normals;
const attributes = new GeometryAttributes();
let corner;
let leftCount = 0;
let rightCount = 0;
let i;
let indicesLength = 0;
let length;
for (i = 0; i < positions.length; i += 2) {
length = positions[i].length - 3;
leftCount += length; //subtracting 3 to account for duplicate points at corners
indicesLength += length * 2;
rightCount += positions[i + 1].length - 3;
}
leftCount += 3; //add back count for end positions
rightCount += 3;
for (i = 0; i < corners.length; i++) {
corner = corners[i];
const leftSide = corners[i].leftPositions;
if (defined(leftSide)) {
length = leftSide.length;
leftCount += length;
indicesLength += length;
} else {
length = corners[i].rightPositions.length;
rightCount += length;
indicesLength += length;
}
}
const addEndPositions = defined(endPositions);
let endPositionLength;
if (addEndPositions) {
endPositionLength = endPositions[0].length - 3;
leftCount += endPositionLength;
rightCount += endPositionLength;
endPositionLength /= 3;
indicesLength += endPositionLength * 6;
}
const size = leftCount + rightCount;
const finalPositions = new Float64Array(size);
const normals = vertexFormat.normal ? new Float32Array(size) : undefined;
const tangents = vertexFormat.tangent ? new Float32Array(size) : undefined;
const bitangents = vertexFormat.bitangent
? new Float32Array(size)
: undefined;
const attr = {
normals: normals,
tangents: tangents,
bitangents: bitangents,
};
let front = 0;
let back = size - 1;
let UL, LL, UR, LR;
let normal = cartesian1;
let left = cartesian2;
let rightPos, leftPos;
const halfLength = endPositionLength / 2;
const indices = IndexDatatype.createTypedArray(size / 3, indicesLength);
let index = 0;
if (addEndPositions) {
// add rounded end
leftPos = cartesian3;
rightPos = cartesian4;
const firstEndPositions = endPositions[0];
normal = Cartesian3.fromArray(computedNormals, 0, normal);
left = Cartesian3.fromArray(computedLefts, 0, left);
for (i = 0; i < halfLength; i++) {
leftPos = Cartesian3.fromArray(
firstEndPositions,
(halfLength - 1 - i) * 3,
leftPos,
);
rightPos = Cartesian3.fromArray(
firstEndPositions,
(halfLength + i) * 3,
rightPos,
);
CorridorGeometryLibrary.addAttribute(finalPositions, rightPos, front);
CorridorGeometryLibrary.addAttribute(
finalPositions,
leftPos,
undefined,
back,
);
addNormals(attr, normal, left, front, back, vertexFormat);
LL = front / 3;
LR = LL + 1;
UL = (back - 2) / 3;
UR = UL - 1;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
front += 3;
back -= 3;
}
}
let posIndex = 0;
let compIndex = 0;
let rightEdge = positions[posIndex++]; //add first two edges
let leftEdge = positions[posIndex++];
finalPositions.set(rightEdge, front);
finalPositions.set(leftEdge, back - leftEdge.length + 1);
left = Cartesian3.fromArray(computedLefts, compIndex, left);
let rightNormal;
let leftNormal;
length = leftEdge.length - 3;
for (i = 0; i < length; i += 3) {
rightNormal = ellipsoid.geodeticSurfaceNormal(
Cartesian3.fromArray(rightEdge, i, scratch1),
scratch1,
);
leftNormal = ellipsoid.geodeticSurfaceNormal(
Cartesian3.fromArray(leftEdge, length - i, scratch2),
scratch2,
);
normal = Cartesian3.normalize(
Cartesian3.add(rightNormal, leftNormal, normal),
normal,
);
addNormals(attr, normal, left, front, back, vertexFormat);
LL = front / 3;
LR = LL + 1;
UL = (back - 2) / 3;
UR = UL - 1;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
front += 3;
back -= 3;
}
rightNormal = ellipsoid.geodeticSurfaceNormal(
Cartesian3.fromArray(rightEdge, length, scratch1),
scratch1,
);
leftNormal = ellipsoid.geodeticSurfaceNormal(
Cartesian3.fromArray(leftEdge, length, scratch2),
scratch2,
);
normal = Cartesian3.normalize(
Cartesian3.add(rightNormal, leftNormal, normal),
normal,
);
compIndex += 3;
for (i = 0; i < corners.length; i++) {
let j;
corner = corners[i];
const l = corner.leftPositions;
const r = corner.rightPositions;
let pivot;
let start;
let outsidePoint = cartesian6;
let previousPoint = cartesian3;
let nextPoint = cartesian4;
normal = Cartesian3.fromArray(computedNormals, compIndex, normal);
if (defined(l)) {
addNormals(attr, normal, left, undefined, back, vertexFormat);
back -= 3;
pivot = LR;
start = UR;
for (j = 0; j < l.length / 3; j++) {
outsidePoint = Cartesian3.fromArray(l, j * 3, outsidePoint);
indices[index++] = pivot;
indices[index++] = start - j - 1;
indices[index++] = start - j;
CorridorGeometryLibrary.addAttribute(
finalPositions,
outsidePoint,
undefined,
back,
);
previousPoint = Cartesian3.fromArray(
finalPositions,
(start - j - 1) * 3,
previousPoint,
);
nextPoint = Cartesian3.fromArray(finalPositions, pivot * 3, nextPoint);
left = Cartesian3.normalize(
Cartesian3.subtract(previousPoint, nextPoint, left),
left,
);
addNormals(attr, normal, left, undefined, back, vertexFormat);
back -= 3;
}
outsidePoint = Cartesian3.fromArray(
finalPositions,
pivot * 3,
outsidePoint,
);
previousPoint = Cartesian3.subtract(
Cartesian3.fromArray(finalPositions, start * 3, previousPoint),
outsidePoint,
previousPoint,
);
nextPoint = Cartesian3.subtract(
Cartesian3.fromArray(finalPositions, (start - j) * 3, nextPoint),
outsidePoint,
nextPoint,
);
left = Cartesian3.normalize(
Cartesian3.add(previousPoint, nextPoint, left),
left,
);
addNormals(attr, normal, left, front, undefined, vertexFormat);
front += 3;
} else {
addNormals(attr, normal, left, front, undefined, vertexFormat);
front += 3;
pivot = UR;
start = LR;
for (j = 0; j < r.length / 3; j++) {
outsidePoint = Cartesian3.fromArray(r, j * 3, outsidePoint);
indices[index++] = pivot;
indices[index++] = start + j;
indices[index++] = start + j + 1;
CorridorGeometryLibrary.addAttribute(
finalPositions,
outsidePoint,
front,
);
previousPoint = Cartesian3.fromArray(
finalPositions,
pivot * 3,
previousPoint,
);
nextPoint = Cartesian3.fromArray(
finalPositions,
(start + j) * 3,
nextPoint,
);
left = Cartesian3.normalize(
Cartesian3.subtract(previousPoint, nextPoint, left),
left,
);
addNormals(attr, normal, left, front, undefined, vertexFormat);
front += 3;
}
outsidePoint = Cartesian3.fromArray(
finalPositions,
pivot * 3,
outsidePoint,
);
previousPoint = Cartesian3.subtract(
Cartesian3.fromArray(finalPositions, (start + j) * 3, previousPoint),
outsidePoint,
previousPoint,
);
nextPoint = Cartesian3.subtract(
Cartesian3.fromArray(finalPositions, start * 3, nextPoint),
outsidePoint,
nextPoint,
);
left = Cartesian3.normalize(
Cartesian3.negate(Cartesian3.add(nextPoint, previousPoint, left), left),
left,
);
addNormals(attr, normal, left, undefined, back, vertexFormat);
back -= 3;
}
rightEdge = positions[posIndex++];
leftEdge = positions[posIndex++];
rightEdge.splice(0, 3); //remove duplicate points added by corner
leftEdge.splice(leftEdge.length - 3, 3);
finalPositions.set(rightEdge, front);
finalPositions.set(leftEdge, back - leftEdge.length + 1);
length = leftEdge.length - 3;
compIndex += 3;
left = Cartesian3.fromArray(computedLefts, compIndex, left);
for (j = 0; j < leftEdge.length; j += 3) {
rightNormal = ellipsoid.geodeticSurfaceNormal(
Cartesian3.fromArray(rightEdge, j, scratch1),
scratch1,
);
leftNormal = ellipsoid.geodeticSurfaceNormal(
Cartesian3.fromArray(leftEdge, length - j, scratch2),
scratch2,
);
normal = Cartesian3.normalize(
Cartesian3.add(rightNormal, leftNormal, normal),
normal,
);
addNormals(attr, normal, left, front, back, vertexFormat);
LR = front / 3;
LL = LR - 1;
UR = (back - 2) / 3;
UL = UR + 1;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
front += 3;
back -= 3;
}
front -= 3;
back += 3;
}
normal = Cartesian3.fromArray(
computedNormals,
computedNormals.length - 3,
normal,
);
addNormals(attr, normal, left, front, back, vertexFormat);
if (addEndPositions) {
// add rounded end
front += 3;
back -= 3;
leftPos = cartesian3;
rightPos = cartesian4;
const lastEndPositions = endPositions[1];
for (i = 0; i < halfLength; i++) {
leftPos = Cartesian3.fromArray(
lastEndPositions,
(endPositionLength - i - 1) * 3,
leftPos,
);
rightPos = Cartesian3.fromArray(lastEndPositions, i * 3, rightPos);
CorridorGeometryLibrary.addAttribute(
finalPositions,
leftPos,
undefined,
back,
);
CorridorGeometryLibrary.addAttribute(finalPositions, rightPos, front);
addNormals(attr, normal, left, front, back, vertexFormat);
LR = front / 3;
LL = LR - 1;
UR = (back - 2) / 3;
UL = UR + 1;
indices[index++] = UL;
indices[index++] = LL;
indices[index++] = UR;
indices[index++] = UR;
indices[index++] = LL;
indices[index++] = LR;
front += 3;
back -= 3;
}
}
attributes.position = new GeometryAttribute({
componentDatatype: ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: finalPositions,
});
if (vertexFormat.st) {
const st = new Float32Array((size / 3) * 2);
let rightSt;
let leftSt;
let stIndex = 0;
if (addEndPositions) {
leftCount /= 3;
rightCount /= 3;
const theta = Math.PI / (endPositionLength + 1);
leftSt = 1 / (leftCount - endPositionLength + 1);
rightSt = 1 / (rightCount - endPositionLength + 1);
let a;
const halfEndPos = endPositionLength / 2;
for (i = halfEndPos + 1; i < endPositionLength + 1; i++) {
// lower left rounded end
a = CesiumMath.PI_OVER_TWO + theta * i;
st[stIndex++] = rightSt * (1 + Math.cos(a));
st[stIndex++] = 0.5 * (1 + Math.sin(a));
}
for (i = 1; i < rightCount - endPositionLength + 1; i++) {
// bottom edge
st[stIndex++] = i * rightSt;
st[stIndex++] = 0;
}
for (i = endPositionLength; i > halfEndPos; i--) {
// lower right rounded end
a = CesiumMath.PI_OVER_TWO - i * theta;
st[stIndex++] = 1 - rightSt * (1 + Math.cos(a));
st[stIndex++] = 0.5 * (1 + Math.sin(a));
}
for (i = halfEndPos; i > 0; i--) {
// upper right rounded end
a = CesiumMath.PI_OVER_TWO - theta * i;
st[stIndex++] = 1 - leftSt * (1 + Math.cos(a));
st[stIndex++] = 0.5 * (1 + Math.sin(a));
}
for (i = leftCount - endPositionLength; i > 0; i--) {
// top edge
st[stIndex++] = i * leftSt;
st[stIndex++] = 1;
}
for (i = 1; i < halfEndPos + 1; i++) {
// upper left rounded end
a = CesiumMath.PI_OVER_TWO + theta * i;
st[stIndex++] = leftSt * (1 + Math.cos(a));
st[stIndex++] = 0.5 * (1 + Math.sin(a));
}
} else {
leftCount /= 3;
rightCount /= 3;
leftSt = 1 / (leftCount - 1);
rightSt = 1 / (rightCount - 1);
for (i = 0; i < rightCount; i++) {
// bottom edge
st[stIndex++] = i * rightSt;
st[stIndex++] = 0;
}
for (i = leftCount; i > 0; i--) {
// top edge
st[stIndex++] = (i - 1) * leftSt;
st[stIndex++] = 1;
}
}
attributes.st = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: st,
});
}
if (vertexFormat.normal) {
attributes.normal = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: attr.normals,
});
}
if (vertexFormat.tangent) {
attributes.tangent = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: attr.tangents,
});
}
if (vertexFormat.bitangent) {
attributes.bitangent = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: attr.bitangents,
});
}
return {
attributes: attributes,
indices: indices,
};
}
function extrudedAttributes(attributes, vertexFormat) {
if (
!vertexFormat.normal &&
!vertexFormat.tangent &&
!vertexFormat.bitangent &&
!vertexFormat.st
) {
return attributes;
}
const positions = attributes.position.values;
let topNormals;
let topBitangents;
if (vertexFormat.normal || vertexFormat.bitangent) {
topNormals = attributes.normal.values;
topBitangents = attributes.bitangent.values;
}
const size = attributes.position.values.length / 18;
const threeSize = size * 3;
const twoSize = size * 2;
const sixSize = threeSize * 2;
let i;
if (vertexFormat.normal || vertexFormat.bitangent || vertexFormat.tangent) {
const normals = vertexFormat.normal
? new Float32Array(threeSize * 6)
: undefined;
const tangents = vertexFormat.tangent
? new Float32Array(threeSize * 6)
: undefined;
const bitangents = vertexFormat.bitangent
? new Float32Array(threeSize * 6)
: undefined;
let topPosition = cartesian1;
let bottomPosition = cartesian2;
let previousPosition = cartesian3;
let normal = cartesian4;
let tangent = cartesian5;
let bitangent = cartesian6;
let attrIndex = sixSize;
for (i = 0; i < threeSize; i += 3) {
const attrIndexOffset = attrIndex + sixSize;
topPosition = Cartesian3.fromArray(positions, i, topPosition);
bottomPosition = Cartesian3.fromArray(
positions,
i + threeSize,
bottomPosition,
);
previousPosition = Cartesian3.fromArray(
positions,
(i + 3) % threeSize,
previousPosition,
);
bottomPosition = Cartesian3.subtract(
bottomPosition,
topPosition,
bottomPosition,
);
previousPosition = Cartesian3.subtract(
previousPosition,
topPosition,
previousPosition,
);
normal = Cartesian3.normalize(
Cartesian3.cross(bottomPosition, previousPosition, normal),
normal,
);
if (vertexFormat.normal) {
CorridorGeometryLibrary.addAttribute(normals, normal, attrIndexOffset);
CorridorGeometryLibrary.addAttribute(
normals,
normal,
attrIndexOffset + 3,
);
CorridorGeometryLibrary.addAttribute(normals, normal, attrIndex);
CorridorGeometryLibrary.addAttribute(normals, normal, attrIndex + 3);
}
if (vertexFormat.tangent || vertexFormat.bitangent) {
bitangent = Cartesian3.fromArray(topNormals, i, bitangent);
if (vertexFormat.bitangent) {
CorridorGeometryLibrary.addAttribute(
bitangents,
bitangent,
attrIndexOffset,
);
CorridorGeometryLibrary.addAttribute(
bitangents,
bitangent,
attrIndexOffset + 3,
);
CorridorGeometryLibrary.addAttribute(
bitangents,
bitangent,
attrIndex,
);
CorridorGeometryLibrary.addAttribute(
bitangents,
bitangent,
attrIndex + 3,
);
}
if (vertexFormat.tangent) {
tangent = Cartesian3.normalize(
Cartesian3.cross(bitangent, normal, tangent),
tangent,
);
CorridorGeometryLibrary.addAttribute(
tangents,
tangent,
attrIndexOffset,
);
CorridorGeometryLibrary.addAttribute(
tangents,
tangent,
attrIndexOffset + 3,
);
CorridorGeometryLibrary.addAttribute(tangents, tangent, attrIndex);
CorridorGeometryLibrary.addAttribute(
tangents,
tangent,
attrIndex + 3,
);
}
}
attrIndex += 6;
}
if (vertexFormat.normal) {
normals.set(topNormals); //top
for (i = 0; i < threeSize; i += 3) {
//bottom normals
normals[i + threeSize] = -topNormals[i];
normals[i + threeSize + 1] = -topNormals[i + 1];
normals[i + threeSize + 2] = -topNormals[i + 2];
}
attributes.normal.values = normals;
} else {
attributes.normal = undefined;
}
if (vertexFormat.bitangent) {
bitangents.set(topBitangents); //top
bitangents.set(topBitangents, threeSize); //bottom
attributes.bitangent.values = bitangents;
} else {
attributes.bitangent = undefined;
}
if (vertexFormat.tangent) {
const topTangents = attributes.tangent.values;
tangents.set(topTangents); //top
tangents.set(topTangents, threeSize); //bottom
attributes.tangent.values = tangents;
}
}
if (vertexFormat.st) {
const topSt = attributes.st.values;
const st = new Float32Array(twoSize * 6);
st.set(topSt); //top
st.set(topSt, twoSize); //bottom
let index = twoSize * 2;
for (let j = 0; j < 2; j++) {
st[index++] = topSt[0];
st[index++] = topSt[1];
for (i = 2; i < twoSize; i += 2) {
const s = topSt[i];
const t = topSt[i + 1];
st[index++] = s;
st[index++] = t;
st[index++] = s;
st[index++] = t;
}
st[index++] = topSt[0];
st[index++] = topSt[1];
}
attributes.st.values = st;
}
return attributes;
}
function addWallPositions(positions, index, wallPositions) {
wallPositions[index++] = positions[0];
wallPositions[index++] = positions[1];
wallPositions[index++] = positions[2];
for (let i = 3; i < positions.length; i += 3) {
const x = positions[i];
const y = positions[i + 1];
const z = positions[i + 2];
wallPositions[index++] = x;
wallPositions[index++] = y;
wallPositions[index++] = z;
wallPositions[index++] = x;
wallPositions[index++] = y;
wallPositions[index++] = z;
}
wallPositions[index++] = positions[0];
wallPositions[index++] = positions[1];
wallPositions[index++] = positions[2];
return wallPositions;
}
function computePositionsExtruded(params, vertexFormat) {
const topVertexFormat = new VertexFormat({
position: vertexFormat.position,
normal:
vertexFormat.normal || vertexFormat.bitangent || params.shadowVolume,
tangent: vertexFormat.tangent,
bitangent: vertexFormat.normal || vertexFormat.bitangent,
st: vertexFormat.st,
});
const ellipsoid = params.ellipsoid;
const computedPositions = CorridorGeometryLibrary.computePositions(params);
const attr = combine(computedPositions, topVertexFormat, ellipsoid);
const height = params.height;
const extrudedHeight = params.extrudedHeight;
let attributes = attr.attributes;
const indices = attr.indices;
let positions = attributes.position.values;
let length = positions.length;
const newPositions = new Float64Array(length * 6);
let extrudedPositions = new Float64Array(length);
extrudedPositions.set(positions);
let wallPositions = new Float64Array(length * 4);
positions = PolygonPipeline.scaleToGeodeticHeight(
positions,
height,
ellipsoid,
);
wallPositions = addWallPositions(positions, 0, wallPositions);
extrudedPositions = PolygonPipeline.scaleToGeodeticHeight(
extrudedPositions,
extrudedHeight,
ellipsoid,
);
wallPositions = addWallPositions(
extrudedPositions,
length * 2,
wallPositions,
);
newPositions.set(positions);
newPositions.set(extrudedPositions, length);
newPositions.set(wallPositions, length * 2);
attributes.position.values = newPositions;
attributes = extrudedAttributes(attributes, vertexFormat);
let i;
const size = length / 3;
if (params.shadowVolume) {
const topNormals = attributes.normal.values;
length = topNormals.length;
let extrudeNormals = new Float32Array(length * 6);
for (i = 0; i < length; i++) {
topNormals[i] = -topNormals[i];
}
//only get normals for bottom layer that's going to be pushed down
extrudeNormals.set(topNormals, length); //bottom face
extrudeNormals = addWallPositions(topNormals, length * 4, extrudeNormals); //bottom wall
attributes.extrudeDirection = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: extrudeNormals,
});
if (!vertexFormat.normal) {
attributes.normal = undefined;
}
}
if (defined(params.offsetAttribute)) {
let applyOffset = new Uint8Array(size * 6);
if (params.offsetAttribute === GeometryOffsetAttribute.TOP) {
applyOffset = applyOffset
.fill(1, 0, size) // top face
.fill(1, size * 2, size * 4); // top wall
} else {
const applyOffsetValue =
params.offsetAttribute === GeometryOffsetAttribute.NONE ? 0 : 1;
applyOffset = applyOffset.fill(applyOffsetValue);
}
attributes.applyOffset = new GeometryAttribute({
componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset,
});
}
const iLength = indices.length;
const twoSize = size + size;
const newIndices = IndexDatatype.createTypedArray(
newPositions.length / 3,
iLength * 2 + twoSize * 3,
);
newIndices.set(indices);
let index = iLength;
for (i = 0; i < iLength; i += 3) {
// bottom indices
const v0 = indices[i];
const v1 = indices[i + 1];
const v2 = indices[i + 2];
newIndices[index++] = v2 + size;
newIndices[index++] = v1 + size;
newIndices[index++] = v0 + size;
}
let UL, LL, UR, LR;
for (i = 0; i < twoSize; i += 2) {
//wall indices
UL = i + twoSize;
LL = UL + twoSize;
UR = UL + 1;
LR = LL + 1;
newIndices[index++] = UL;
newIndices[index++] = LL;
newIndices[index++] = UR;
newIndices[index++] = UR;
newIndices[index++] = LL;
newIndices[index++] = LR;
}
return {
attributes: attributes,
indices: newIndices,
};
}
const scratchCartesian1 = new Cartesian3();
const scratchCartesian2 = new Cartesian3();
const scratchCartographic = new Cartographic();
function computeOffsetPoints(
position1,
position2,
ellipsoid,
halfWidth,
min,
max,
) {
// Compute direction of offset the point
const direction = Cartesian3.subtract(
position2,
position1,
scratchCartesian1,
);
Cartesian3.normalize(direction, direction);
const normal = ellipsoid.geodeticSurfaceNormal(position1, scratchCartesian2);
const offsetDirection = Cartesian3.cross(
direction,
normal,
scratchCartesian1,
);
Cartesian3.multiplyByScalar(offsetDirection, halfWidth, offsetDirection);
let minLat = min.latitude;
let minLon = min.longitude;
let maxLat = max.latitude;
let maxLon = max.longitude;
// Compute 2 offset points
Cartesian3.add(position1, offsetDirection, scratchCartesian2);
ellipsoid.cartesianToCartographic(scratchCartesian2, scratchCartographic);
let lat = scratchCartographic.latitude;
let lon = scratchCartographic.longitude;
minLat = Math.min(minLat, lat);
minLon = Math.min(minLon, lon);
maxLat = Math.max(maxLat, lat);
maxLon = Math.max(maxLon, lon);
Cartesian3.subtract(position1, offsetDirection, scratchCartesian2);
ellipsoid.cartesianToCartographic(scratchCartesian2, scratchCartographic);
lat = scratchCartographic.latitude;
lon = scratchCartographic.longitude;
minLat = Math.min(minLat, lat);
minLon = Math.min(minLon, lon);
maxLat = Math.max(maxLat, lat);
maxLon = Math.max(maxLon, lon);
min.latitude = minLat;
min.longitude = minLon;
max.latitude = maxLat;
max.longitude = maxLon;
}
const scratchCartesianOffset = new Cartesian3();
const scratchCartesianEnds = new Cartesian3();
const scratchCartographicMin = new Cartographic();
const scratchCartographicMax = new Cartographic();
function computeRectangle(positions, ellipsoid, width, cornerType, result) {
positions = scaleToSurface(positions, ellipsoid);
const cleanPositions = arrayRemoveDuplicates(
positions,
Cartesian3.equalsEpsilon,
);
const length = cleanPositions.length;
if (length < 2 || width <= 0) {
return new Rectangle();
}
const halfWidth = width * 0.5;
scratchCartographicMin.latitude = Number.POSITIVE_INFINITY;
scratchCartographicMin.longitude = Number.POSITIVE_INFINITY;
scratchCartographicMax.latitude = Number.NEGATIVE_INFINITY;
scratchCartographicMax.longitude = Number.NEGATIVE_INFINITY;
let lat, lon;
if (cornerType === CornerType.ROUNDED) {
// Compute start cap
const first = cleanPositions[0];
Cartesian3.subtract(first, cleanPositions[1], scratchCartesianOffset);
Cartesian3.normalize(scratchCartesianOffset, scratchCartesianOffset);
Cartesian3.multiplyByScalar(
scratchCartesianOffset,
halfWidth,
scratchCartesianOffset,
);
Cartesian3.add(first, scratchCartesianOffset, scratchCartesianEnds);
ellipsoid.cartesianToCartographic(
scratchCartesianEnds,
scratchCartographic,
);
lat = scratchCartographic.latitude;
lon = scratchCartographic.longitude;
scratchCartographicMin.latitude = Math.min(
scratchCartographicMin.latitude,
lat,
);
scratchCartographicMin.longitude = Math.min(
scratchCartographicMin.longitude,
lon,
);
scratchCartographicMax.latitude = Math.max(
scratchCartographicMax.latitude,
lat,
);
scratchCartographicMax.longitude = Math.max(
scratchCartographicMax.longitude,
lon,
);
}
// Compute the rest
for (let i = 0; i < length - 1; ++i) {
computeOffsetPoints(
cleanPositions[i],
cleanPositions[i + 1],
ellipsoid,
halfWidth,
scratchCartographicMin,
scratchCartographicMax,
);
}
// Compute ending point
const last = cleanPositions[length - 1];
Cartesian3.subtract(last, cleanPositions[length - 2], scratchCartesianOffset);
Cartesian3.normalize(scratchCartesianOffset, scratchCartesianOffset);
Cartesian3.multiplyByScalar(
scratchCartesianOffset,
halfWidth,
scratchCartesianOffset,
);
Cartesian3.add(last, scratchCartesianOffset, scratchCartesianEnds);
computeOffsetPoints(
last,
scratchCartesianEnds,
ellipsoid,
halfWidth,
scratchCartographicMin,
scratchCartographicMax,
);
if (cornerType === CornerType.ROUNDED) {
// Compute end cap
ellipsoid.cartesianToCartographic(
scratchCartesianEnds,
scratchCartographic,
);
lat = scratchCartographic.latitude;
lon = scratchCartographic.longitude;
scratchCartographicMin.latitude = Math.min(
scratchCartographicMin.latitude,
lat,
);
scratchCartographicMin.longitude = Math.min(
scratchCartographicMin.longitude,
lon,
);
scratchCartographicMax.latitude = Math.max(
scratchCartographicMax.latitude,
lat,
);
scratchCartographicMax.longitude = Math.max(
scratchCartographicMax.longitude,
lon,
);
}
const rectangle = defined(result) ? result : new Rectangle();
rectangle.north = scratchCartographicMax.latitude;
rectangle.south = scratchCartographicMin.latitude;
rectangle.east = scratchCartographicMax.longitude;
rectangle.west = scratchCartographicMin.longitude;
return rectangle;
}
/**
* A description of a corridor. Corridor geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}.
*
* @alias CorridorGeometry
* @constructor
*
* @param {object} options Object with the following properties:
* @param {Cartesian3[]} options.positions An array of positions that define the center of the corridor.
* @param {number} options.width The distance between the edges of the corridor in meters.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.default] The ellipsoid to be used as a reference.
* @param {number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
* @param {number} [options.height=0] The distance in meters between the ellipsoid surface and the positions.
* @param {number} [options.extrudedHeight] The distance in meters between the ellipsoid surface and the extruded face.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
* @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners.
*
* @see CorridorGeometry.createGeometry
* @see Packable
*
* @demo {@link https://sandcastle.cesium.com/index.html?src=Corridor.html|Cesium Sandcastle Corridor Demo}
*
* @example
* const corridor = new Cesium.CorridorGeometry({
* vertexFormat : Cesium.VertexFormat.POSITION_ONLY,
* positions : Cesium.Cartesian3.fromDegreesArray([-72.0, 40.0, -70.0, 35.0]),
* width : 100000
* });
*/
function CorridorGeometry(options) {
options = options ?? Frozen.EMPTY_OBJECT;
const positions = options.positions;
const width = options.width;
//>>includeStart('debug', pragmas.debug);
Check.defined("options.positions", positions);
Check.defined("options.width", width);
//>>includeEnd('debug');
const height = options.height ?? 0.0;
const extrudedHeight = options.extrudedHeight ?? height;
this._positions = positions;
this._ellipsoid = Ellipsoid.clone(options.ellipsoid ?? Ellipsoid.default);
this._vertexFormat = VertexFormat.clone(
options.vertexFormat ?? VertexFormat.DEFAULT,
);
this._width = width;
this._height = Math.max(height, extrudedHeight);
this._extrudedHeight = Math.min(height, extrudedHeight);
this._cornerType = options.cornerType ?? CornerType.ROUNDED;
this._granularity = options.granularity ?? CesiumMath.RADIANS_PER_DEGREE;
this._shadowVolume = options.shadowVolume ?? false;
this._workerName = "createCorridorGeometry";
this._offsetAttribute = options.offsetAttribute;
this._rectangle = undefined;
/**
* The number of elements used to pack the object into an array.
* @type {number}
*/
this.packedLength =
1 +
positions.length * Cartesian3.packedLength +
Ellipsoid.packedLength +
VertexFormat.packedLength +
7;
}
/**
* Stores the provided instance into the provided array.
*
* @param {CorridorGeometry} value The value to pack.
* @param {number[]} array The array to pack into.
* @param {number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {number[]} The array that was packed into
*/
CorridorGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.defined("value", value);
Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
const positions = value._positions;
const length = positions.length;
array[startingIndex++] = length;
for (let i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
Cartesian3.pack(positions[i], array, startingIndex);
}
Ellipsoid.pack(value._ellipsoid, array, startingIndex);
startingIndex += Ellipsoid.packedLength;
VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.packedLength;
array[startingIndex++] = value._width;
array[startingIndex++] = value._height;
array[startingIndex++] = value._extrudedHeight;
array[startingIndex++] = value._cornerType;
array[startingIndex++] = value._granularity;
array[startingIndex++] = value._shadowVolume ? 1.0 : 0.0;
array[startingIndex] = value._offsetAttribute ?? -1;
return array;
};
const scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE);
const scratchVertexFormat = new VertexFormat();
const scratchOptions = {
positions: undefined,
ellipsoid: scratchEllipsoid,
vertexFormat: scratchVertexFormat,
width: undefined,
height: undefined,
extrudedHeight: undefined,
cornerType: undefined,
granularity: undefined,
shadowVolume: undefined,
offsetAttribute: undefined,
};
/**
* Retrieves an instance from a packed array.
*
* @param {number[]} array The packed array.
* @param {number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {CorridorGeometry} [result] The object into which to store the result.
* @returns {CorridorGeometry} The modified result parameter or a new CorridorGeometry instance if one was not provided.
*/
CorridorGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.defined("array", array);
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
const length = array[startingIndex++];
const positions = new Array(length);
for (let i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
positions[i] = Cartesian3.unpack(array, startingIndex);
}
const ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
startingIndex += Ellipsoid.packedLength;
const vertexFormat = VertexFormat.unpack(
array,
startingIndex,
scratchVertexFormat,
);
startingIndex += VertexFormat.packedLength;
const width = array[startingIndex++];
const height = array[startingIndex++];
const extrudedHeight = array[startingIndex++];
const cornerType = array[startingIndex++];
const granularity = array[startingIndex++];
const shadowVolume = array[startingIndex++] === 1.0;
const offsetAttribute = array[startingIndex];
if (!defined(result)) {
scratchOptions.positions = positions;
scratchOptions.width = width;
scratchOptions.height = height;
scratchOptions.extrudedHeight = extrudedHeight;
scratchOptions.cornerType = cornerType;
scratchOptions.granularity = granularity;
scratchOptions.shadowVolume = shadowVolume;
scratchOptions.offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return new CorridorGeometry(scratchOptions);
}
result._positions = positions;
result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid);
result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);
result._width = width;
result._height = height;
result._extrudedHeight = extrudedHeight;
result._cornerType = cornerType;
result._granularity = granularity;
result._shadowVolume = shadowVolume;
result._offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return result;
};
/**
* Computes the bounding rectangle given the provided options
*
* @param {object} options Object with the following properties:
* @param {Cartesian3[]} options.positions An array of positions that define the center of the corridor.
* @param {number} options.width The distance between the edges of the corridor in meters.
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.default] The ellipsoid to be used as a reference.
* @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners.
* @param {Rectangle} [result] An object in which to store the result.
*
* @returns {Rectangle} The result rectangle.
*/
CorridorGeometry.computeRectangle = function (options, result) {
options = options ?? Frozen.EMPTY_OBJECT;
const positions = options.positions;
const width = options.width;
//>>includeStart('debug', pragmas.debug);
Check.defined("options.positions", positions);
Check.defined("options.width", width);
//>>includeEnd('debug');
const ellipsoid = options.ellipsoid ?? Ellipsoid.default;
const cornerType = options.cornerType ?? CornerType.ROUNDED;
return computeRectangle(positions, ellipsoid, width, cornerType, result);
};
/**
* Computes the geometric representation of a corridor, including its vertices, indices, and a bounding sphere.
*
* @param {CorridorGeometry} corridorGeometry A description of the corridor.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
CorridorGeometry.createGeometry = function (corridorGeometry) {
let positions = corridorGeometry._positions;
const width = corridorGeometry._width;
const ellipsoid = corridorGeometry._ellipsoid;
positions = scaleToSurface(positions, ellipsoid);
const cleanPositions = arrayRemoveDuplicates(
positions,
Cartesian3.equalsEpsilon,
);
if (cleanPositions.length < 2 || width <= 0) {
return;
}
const height = corridorGeometry._height;
const extrudedHeight = corridorGeometry._extrudedHeight;
const extrude = !CesiumMath.equalsEpsilon(
height,
extrudedHeight,
0,
CesiumMath.EPSILON2,
);
const vertexFormat = corridorGeometry._vertexFormat;
const params = {
ellipsoid: ellipsoid,
positions: cleanPositions,
width: width,
cornerType: corridorGeometry._cornerType,
granularity: corridorGeometry._granularity,
saveAttributes: true,
};
let attr;
if (extrude) {
params.height = height;
params.extrudedHeight = extrudedHeight;
params.shadowVolume = corridorGeometry._shadowVolume;
params.offsetAttribute = corridorGeometry._offsetAttribute;
attr = computePositionsExtruded(params, vertexFormat);
} else {
const computedPositions = CorridorGeometryLibrary.computePositions(params);
attr = combine(computedPositions, vertexFormat, ellipsoid);
attr.attributes.position.values = PolygonPipeline.scaleToGeodeticHeight(
attr.attributes.position.values,
height,
ellipsoid,
);
if (defined(corridorGeometry._offsetAttribute)) {
const applyOffsetValue =
corridorGeometry._offsetAttribute === GeometryOffsetAttribute.NONE
? 0
: 1;
const length = attr.attributes.position.values.length;
const applyOffset = new Uint8Array(length / 3).fill(applyOffsetValue);
attr.attributes.applyOffset = new GeometryAttribute({
componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset,
});
}
}
const attributes = attr.attributes;
const boundingSphere = BoundingSphere.fromVertices(
attributes.position.values,
undefined,
3,
);
if (!vertexFormat.position) {
attr.attributes.position.values = undefined;
}
return new Geometry({
attributes: attributes,
indices: attr.indices,
primitiveType: PrimitiveType.TRIANGLES,
boundingSphere: boundingSphere,
offsetAttribute: corridorGeometry._offsetAttribute,
});
};
/**
* @private
*/
CorridorGeometry.createShadowVolume = function (
corridorGeometry,
minHeightFunc,
maxHeightFunc,
) {
const granularity = corridorGeometry._granularity;
const ellipsoid = corridorGeometry._ellipsoid;
const minHeight = minHeightFunc(granularity, ellipsoid);
const maxHeight = maxHeightFunc(granularity, ellipsoid);
return new CorridorGeometry({
positions: corridorGeometry._positions,
width: corridorGeometry._width,
cornerType: corridorGeometry._cornerType,
ellipsoid: ellipsoid,
granularity: granularity,
extrudedHeight: minHeight,
height: maxHeight,
vertexFormat: VertexFormat.POSITION_ONLY,
shadowVolume: true,
});
};
Object.defineProperties(CorridorGeometry.prototype, {
/**
* @private
*/
rectangle: {
get: function () {
if (!defined(this._rectangle)) {
this._rectangle = computeRectangle(
this._positions,
this._ellipsoid,
this._width,
this._cornerType,
);
}
return this._rectangle;
},
},
/**
* For remapping texture coordinates when rendering CorridorGeometries as GroundPrimitives.
*
* Corridors don't support stRotation,
* so just return the corners of the original system.
* @private
*/
textureCoordinateRotationPoints: {
get: function () {
return [0, 0, 0, 1, 1, 0];
},
},
});
export default CorridorGeometry;