@cesium/engine
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
1,302 lines (1,135 loc) • 35.3 kB
JavaScript
import ArcType from "./ArcType.js";
import arrayRemoveDuplicates from "./arrayRemoveDuplicates.js";
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import Cartographic from "./Cartographic.js";
import ComponentDatatype from "./ComponentDatatype.js";
import defined from "./defined.js";
import Ellipsoid from "./Ellipsoid.js";
import EllipsoidRhumbLine from "./EllipsoidRhumbLine.js";
import Geometry from "./Geometry.js";
import GeometryAttribute from "./GeometryAttribute.js";
import GeometryAttributes from "./GeometryAttributes.js";
import GeometryPipeline from "./GeometryPipeline.js";
import IndexDatatype from "./IndexDatatype.js";
import IntersectionTests from "./IntersectionTests.js";
import CesiumMath from "./Math.js";
import Matrix3 from "./Matrix3.js";
import Plane from "./Plane.js";
import PolygonHierarchy from "./PolygonHierarchy.js";
import PolygonPipeline from "./PolygonPipeline.js";
import PrimitiveType from "./PrimitiveType.js";
import Quaternion from "./Quaternion.js";
import Queue from "./Queue.js";
import WindingOrder from "./WindingOrder.js";
/**
* @private
*/
const PolygonGeometryLibrary = {};
PolygonGeometryLibrary.computeHierarchyPackedLength = function (
polygonHierarchy,
CartesianX,
) {
let numComponents = 0;
const stack = [polygonHierarchy];
while (stack.length > 0) {
const hierarchy = stack.pop();
if (!defined(hierarchy)) {
continue;
}
numComponents += 2;
const positions = hierarchy.positions;
const holes = hierarchy.holes;
if (defined(positions) && positions.length > 0) {
numComponents += positions.length * CartesianX.packedLength;
}
if (defined(holes)) {
const length = holes.length;
for (let i = 0; i < length; ++i) {
stack.push(holes[i]);
}
}
}
return numComponents;
};
PolygonGeometryLibrary.packPolygonHierarchy = function (
polygonHierarchy,
array,
startingIndex,
CartesianX,
) {
const stack = [polygonHierarchy];
while (stack.length > 0) {
const hierarchy = stack.pop();
if (!defined(hierarchy)) {
continue;
}
const positions = hierarchy.positions;
const holes = hierarchy.holes;
array[startingIndex++] = defined(positions) ? positions.length : 0;
array[startingIndex++] = defined(holes) ? holes.length : 0;
if (defined(positions)) {
const positionsLength = positions.length;
for (
let i = 0;
i < positionsLength;
++i, startingIndex += CartesianX.packedLength
) {
CartesianX.pack(positions[i], array, startingIndex);
}
}
if (defined(holes)) {
const holesLength = holes.length;
for (let j = 0; j < holesLength; ++j) {
stack.push(holes[j]);
}
}
}
return startingIndex;
};
PolygonGeometryLibrary.unpackPolygonHierarchy = function (
array,
startingIndex,
CartesianX,
) {
const positionsLength = array[startingIndex++];
const holesLength = array[startingIndex++];
const positions = new Array(positionsLength);
const holes = holesLength > 0 ? new Array(holesLength) : undefined;
for (
let i = 0;
i < positionsLength;
++i, startingIndex += CartesianX.packedLength
) {
positions[i] = CartesianX.unpack(array, startingIndex);
}
for (let j = 0; j < holesLength; ++j) {
holes[j] = PolygonGeometryLibrary.unpackPolygonHierarchy(
array,
startingIndex,
CartesianX,
);
startingIndex = holes[j].startingIndex;
delete holes[j].startingIndex;
}
return {
positions: positions,
holes: holes,
startingIndex: startingIndex,
};
};
const distance2DScratch = new Cartesian2();
function getPointAtDistance2D(p0, p1, distance, length) {
Cartesian2.subtract(p1, p0, distance2DScratch);
Cartesian2.multiplyByScalar(
distance2DScratch,
distance / length,
distance2DScratch,
);
Cartesian2.add(p0, distance2DScratch, distance2DScratch);
return [distance2DScratch.x, distance2DScratch.y];
}
const distanceScratch = new Cartesian3();
function getPointAtDistance(p0, p1, distance, length) {
Cartesian3.subtract(p1, p0, distanceScratch);
Cartesian3.multiplyByScalar(
distanceScratch,
distance / length,
distanceScratch,
);
Cartesian3.add(p0, distanceScratch, distanceScratch);
return [distanceScratch.x, distanceScratch.y, distanceScratch.z];
}
PolygonGeometryLibrary.subdivideLineCount = function (p0, p1, minDistance) {
const distance = Cartesian3.distance(p0, p1);
const n = distance / minDistance;
const countDivide = Math.max(0, Math.ceil(CesiumMath.log2(n)));
return Math.pow(2, countDivide);
};
const scratchCartographic0 = new Cartographic();
const scratchCartographic1 = new Cartographic();
const scratchCartographic2 = new Cartographic();
const scratchCartesian0 = new Cartesian3();
const scratchRhumbLine = new EllipsoidRhumbLine();
PolygonGeometryLibrary.subdivideRhumbLineCount = function (
ellipsoid,
p0,
p1,
minDistance,
) {
const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0);
const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1);
const rhumb = new EllipsoidRhumbLine(c0, c1, ellipsoid);
const n = rhumb.surfaceDistance / minDistance;
const countDivide = Math.max(0, Math.ceil(CesiumMath.log2(n)));
return Math.pow(2, countDivide);
};
/**
* Subdivides texture coordinates based on the subdivision of the associated world positions.
*
* @param {Cartesian2} t0 First texture coordinate.
* @param {Cartesian2} t1 Second texture coordinate.
* @param {Cartesian3} p0 First world position.
* @param {Cartesian3} p1 Second world position.
* @param {number} minDistance Minimum distance for a segment.
* @param {Cartesian2[]} result The subdivided texture coordinates.
*
* @private
*/
PolygonGeometryLibrary.subdivideTexcoordLine = function (
t0,
t1,
p0,
p1,
minDistance,
result,
) {
// Compute the number of subdivisions.
const subdivisions = PolygonGeometryLibrary.subdivideLineCount(
p0,
p1,
minDistance,
);
// Compute the distance between each subdivided point.
const length2D = Cartesian2.distance(t0, t1);
const distanceBetweenCoords = length2D / subdivisions;
// Resize the result array.
const texcoords = result;
texcoords.length = subdivisions * 2;
// Compute texture coordinates using linear interpolation.
let index = 0;
for (let i = 0; i < subdivisions; i++) {
const t = getPointAtDistance2D(t0, t1, i * distanceBetweenCoords, length2D);
texcoords[index++] = t[0];
texcoords[index++] = t[1];
}
return texcoords;
};
PolygonGeometryLibrary.subdivideLine = function (p0, p1, minDistance, result) {
const numVertices = PolygonGeometryLibrary.subdivideLineCount(
p0,
p1,
minDistance,
);
const length = Cartesian3.distance(p0, p1);
const distanceBetweenVertices = length / numVertices;
if (!defined(result)) {
result = [];
}
const positions = result;
positions.length = numVertices * 3;
let index = 0;
for (let i = 0; i < numVertices; i++) {
const p = getPointAtDistance(p0, p1, i * distanceBetweenVertices, length);
positions[index++] = p[0];
positions[index++] = p[1];
positions[index++] = p[2];
}
return positions;
};
/**
* Subdivides texture coordinates based on the subdivision of the associated world positions using a rhumb line.
*
* @param {Cartesian2} t0 First texture coordinate.
* @param {Cartesian2} t1 Second texture coordinate.
* @param {Ellipsoid} ellipsoid The ellipsoid.
* @param {Cartesian3} p0 First world position.
* @param {Cartesian3} p1 Second world position.
* @param {number} minDistance Minimum distance for a segment.
* @param {Cartesian2[]} result The subdivided texture coordinates.
*
* @private
*/
PolygonGeometryLibrary.subdivideTexcoordRhumbLine = function (
t0,
t1,
ellipsoid,
p0,
p1,
minDistance,
result,
) {
// Compute the surface distance.
const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0);
const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1);
scratchRhumbLine.setEndPoints(c0, c1);
const n = scratchRhumbLine.surfaceDistance / minDistance;
// Compute the number of subdivisions.
const countDivide = Math.max(0, Math.ceil(CesiumMath.log2(n)));
const subdivisions = Math.pow(2, countDivide);
// Compute the distance between each subdivided point.
const length2D = Cartesian2.distance(t0, t1);
const distanceBetweenCoords = length2D / subdivisions;
// Resize the result array.
const texcoords = result;
texcoords.length = subdivisions * 2;
// Compute texture coordinates using linear interpolation.
let index = 0;
for (let i = 0; i < subdivisions; i++) {
const t = getPointAtDistance2D(t0, t1, i * distanceBetweenCoords, length2D);
texcoords[index++] = t[0];
texcoords[index++] = t[1];
}
return texcoords;
};
/**
* Subdivide the line between 2 points every minDistance length
* If the points are already closer than minDistance the first will be returned
*
* @private
* @param {Ellipsoid} ellipsoid
* @param {Cartesian3} p0 start point
* @param {Cartesian3} p1 end point
* @param {number} minDistance minimum distance between points in radians
* @param {number[]} [result] if provided positions will be packed into this array starting at index 0
* @returns {number[]} Cartesian3 positions packed into an array
*/
PolygonGeometryLibrary.subdivideRhumbLine = function (
ellipsoid,
p0,
p1,
minDistance,
result,
) {
const c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0);
const c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1);
const rhumb = new EllipsoidRhumbLine(c0, c1, ellipsoid);
if (!defined(result)) {
result = [];
}
if (rhumb.surfaceDistance <= minDistance) {
// no need to try and subdivide a line that's already shorter than the min distance
// this also inherently handles duplicated points which would have 0 distance
result.length = 3;
result[0] = p0.x;
result[1] = p0.y;
result[2] = p0.z;
return result;
}
const n = rhumb.surfaceDistance / minDistance;
const countDivide = Math.max(0, Math.ceil(CesiumMath.log2(n)));
const numVertices = Math.pow(2, countDivide);
const distanceBetweenVertices = rhumb.surfaceDistance / numVertices;
const positions = result;
positions.length = numVertices * 3;
let index = 0;
for (let i = 0; i < numVertices; i++) {
const c = rhumb.interpolateUsingSurfaceDistance(
i * distanceBetweenVertices,
scratchCartographic2,
);
const p = ellipsoid.cartographicToCartesian(c, scratchCartesian0);
positions[index++] = p.x;
positions[index++] = p.y;
positions[index++] = p.z;
}
return positions;
};
const scaleToGeodeticHeightN1 = new Cartesian3();
const scaleToGeodeticHeightN2 = new Cartesian3();
const scaleToGeodeticHeightP1 = new Cartesian3();
const scaleToGeodeticHeightP2 = new Cartesian3();
PolygonGeometryLibrary.scaleToGeodeticHeightExtruded = function (
geometry,
maxHeight,
minHeight,
ellipsoid,
perPositionHeight,
) {
ellipsoid = ellipsoid ?? Ellipsoid.default;
const n1 = scaleToGeodeticHeightN1;
let n2 = scaleToGeodeticHeightN2;
const p = scaleToGeodeticHeightP1;
let p2 = scaleToGeodeticHeightP2;
if (
defined(geometry) &&
defined(geometry.attributes) &&
defined(geometry.attributes.position)
) {
const positions = geometry.attributes.position.values;
const length = positions.length / 2;
for (let i = 0; i < length; i += 3) {
Cartesian3.fromArray(positions, i, p);
ellipsoid.geodeticSurfaceNormal(p, n1);
p2 = ellipsoid.scaleToGeodeticSurface(p, p2);
n2 = Cartesian3.multiplyByScalar(n1, minHeight, n2);
n2 = Cartesian3.add(p2, n2, n2);
positions[i + length] = n2.x;
positions[i + 1 + length] = n2.y;
positions[i + 2 + length] = n2.z;
if (perPositionHeight) {
p2 = Cartesian3.clone(p, p2);
}
n2 = Cartesian3.multiplyByScalar(n1, maxHeight, n2);
n2 = Cartesian3.add(p2, n2, n2);
positions[i] = n2.x;
positions[i + 1] = n2.y;
positions[i + 2] = n2.z;
}
}
return geometry;
};
PolygonGeometryLibrary.polygonOutlinesFromHierarchy = function (
polygonHierarchy,
scaleToEllipsoidSurface,
ellipsoid,
) {
// create from a polygon hierarchy
// Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
const polygons = [];
const queue = new Queue();
queue.enqueue(polygonHierarchy);
let i;
let j;
let length;
while (queue.length !== 0) {
const outerNode = queue.dequeue();
let outerRing = outerNode.positions;
if (scaleToEllipsoidSurface) {
length = outerRing.length;
for (i = 0; i < length; i++) {
ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]);
}
}
outerRing = arrayRemoveDuplicates(
outerRing,
Cartesian3.equalsEpsilon,
true,
);
if (outerRing.length < 3) {
continue;
}
const numChildren = outerNode.holes ? outerNode.holes.length : 0;
// The outer polygon contains inner polygons
for (i = 0; i < numChildren; i++) {
const hole = outerNode.holes[i];
let holePositions = hole.positions;
if (scaleToEllipsoidSurface) {
length = holePositions.length;
for (j = 0; j < length; ++j) {
ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]);
}
}
holePositions = arrayRemoveDuplicates(
holePositions,
Cartesian3.equalsEpsilon,
true,
);
if (holePositions.length < 3) {
continue;
}
polygons.push(holePositions);
let numGrandchildren = 0;
if (defined(hole.holes)) {
numGrandchildren = hole.holes.length;
}
for (j = 0; j < numGrandchildren; j++) {
queue.enqueue(hole.holes[j]);
}
}
polygons.push(outerRing);
}
return polygons;
};
const scratchRhumbIntersection = new Cartographic();
function computeEquatorIntersectionRhumb(start, end, ellipsoid) {
const c0 = ellipsoid.cartesianToCartographic(start, scratchCartographic0);
const c1 = ellipsoid.cartesianToCartographic(end, scratchCartographic1);
if (Math.sign(c0.latitude) === Math.sign(c1.latitude)) {
return;
}
scratchRhumbLine.setEndPoints(c0, c1);
const intersection = scratchRhumbLine.findIntersectionWithLatitude(
0,
scratchRhumbIntersection,
);
if (!defined(intersection)) {
return;
}
let minLongitude = Math.min(c0.longitude, c1.longitude);
let maxLongitude = Math.max(c0.longitude, c1.longitude);
if (Math.abs(maxLongitude - minLongitude) > CesiumMath.PI) {
// Crosses IDL, flip min and max
const swap = minLongitude;
minLongitude = maxLongitude;
maxLongitude = swap;
}
if (
intersection.longitude < minLongitude ||
intersection.longitude > maxLongitude
) {
return;
}
return ellipsoid.cartographicToCartesian(intersection);
}
function computeEquatorIntersection(start, end, ellipsoid, arcType) {
if (arcType === ArcType.RHUMB) {
return computeEquatorIntersectionRhumb(start, end, ellipsoid);
}
const intersection = IntersectionTests.lineSegmentPlane(
start,
end,
Plane.ORIGIN_XY_PLANE,
);
if (!defined(intersection)) {
return;
}
return ellipsoid.scaleToGeodeticSurface(intersection, intersection);
}
const scratchCartographic = new Cartographic();
function computeEdgesOnPlane(positions, ellipsoid, arcType) {
const edgesOnPlane = [];
let startPoint,
endPoint,
type,
next,
intersection,
i = 0;
while (i < positions.length) {
startPoint = positions[i];
endPoint = positions[(i + 1) % positions.length];
type = CesiumMath.sign(startPoint.z);
next = CesiumMath.sign(endPoint.z);
const getLongitude = (position) => {
const cartographic = ellipsoid.cartesianToCartographic(
position,
scratchCartographic,
);
return cartographic.longitude;
};
if (type === 0) {
// The start position is on the split
edgesOnPlane.push({
position: i,
type: type,
visited: false,
next: next,
theta: getLongitude(startPoint),
});
} else if (next !== 0) {
intersection = computeEquatorIntersection(
startPoint,
endPoint,
ellipsoid,
arcType,
);
++i;
if (!defined(intersection)) {
// The line segment is entirely above or below
continue;
}
// The line segment passed through
positions.splice(i, 0, intersection);
edgesOnPlane.push({
position: i,
type: type,
visited: false,
next: next,
theta: getLongitude(intersection),
});
}
++i;
}
return edgesOnPlane;
}
function wirePolygon(
polygons,
polygonIndex,
positions,
edgesOnPlane,
toDelete,
startIndex,
abovePlane,
) {
const polygon = [];
let i = startIndex;
const getMatchingEdge = (i) => (edge) => edge.position === i;
const polygonsToWire = [];
do {
const position = positions[i];
polygon.push(position);
const edgeIndex = edgesOnPlane.findIndex(getMatchingEdge(i));
const edge = edgesOnPlane[edgeIndex];
if (!defined(edge)) {
// The current segment does not intersect
++i;
continue;
}
const { visited: hasBeenVisited, type, next } = edge;
edge.visited = true;
if (type === 0) {
if (next === 0) {
// Special case where we'll need to backtrack along the edge
const previousEdge = edgesOnPlane[edgeIndex - (abovePlane ? 1 : -1)];
if (previousEdge?.position === i + 1) {
previousEdge.visited = true;
} else {
++i;
continue;
}
}
// Special case where 3 polygons meet
if (
(!hasBeenVisited && abovePlane && next > 0) ||
(startIndex === i && !abovePlane && next < 0)
) {
++i;
continue;
}
}
const followEdge = abovePlane ? type >= 0 : type <= 0;
if (!followEdge) {
++i;
continue;
}
if (!hasBeenVisited) {
// Wire another polygon starting at this position on the other side of the edge
polygonsToWire.push(i);
}
// Continue counter-clockwise to the next edge
const nextEdgeIndex = edgeIndex + (abovePlane ? 1 : -1);
const nextEdge = edgesOnPlane[nextEdgeIndex];
if (!defined(nextEdge)) {
++i;
continue;
}
i = nextEdge.position;
} while (
i < positions.length &&
i >= 0 &&
i !== startIndex &&
polygon.length < positions.length
);
polygons.splice(polygonIndex, toDelete, polygon);
for (const index of polygonsToWire) {
polygonIndex = wirePolygon(
polygons,
++polygonIndex,
positions,
edgesOnPlane,
0,
index,
!abovePlane,
);
}
return polygonIndex;
}
/**
* Splits an array of polygons, defined as a list of Cartesian3 positions in counter-clockwise winding order, along the equator.
*
* @param {Array<Cartesian3[]>} outerRings An array of polygons, defined as a list of Cartesian3 positions in counter-clockwise winding order.
* @param {Ellipsoid} ellipsoid The ellipsoid to be used as a reference.
* @param {ArcType} arcType The type of line the polygon edges must follow. Valid options are {@link ArcType.GEODESIC} and {@link ArcType.RHUMB}.
* @param {Array<Cartesian3[]>} [result] An array of split polygons.
*
* @returns {Array<Cartesian3[]>} An array of split polygons.
*/
PolygonGeometryLibrary.splitPolygonsOnEquator = function (
outerRings,
ellipsoid,
arcType,
result,
) {
if (!defined(result)) {
result = [];
}
result.splice(0, 0, ...outerRings);
result.length = outerRings.length;
let currentPolygon = 0;
while (currentPolygon < result.length) {
// Adapted from https://www.sciencedirect.com/science/article/abs/pii/B9780125434577500589#:~:text=If%20the%20plane%20intersects%20the,tree%20and%20polygon%20intersection%20libraries
const outerRing = result[currentPolygon];
const positions = outerRing.slice();
if (outerRing.length < 3) {
result[currentPolygon] = positions;
++currentPolygon;
continue;
}
// Step 1: Get all edges which intersect the split line, splciing any found intersections points into the list of positions
const edgesOnPlane = computeEdgesOnPlane(positions, ellipsoid, arcType);
// If nothing intersected (no point were added), or there is only a single point on the plane, use the original polygon
if (positions.length === outerRing.length || edgesOnPlane.length <= 1) {
result[currentPolygon] = positions;
++currentPolygon;
continue;
}
// Step 2: Sort the edges along the split line by the distance between their starting points and the starting point of the split line.
edgesOnPlane.sort((a, b) => {
return a.theta - b.theta;
});
// Step 3: Rewire polygons, splicing each polygon into the array of results
const north = positions[0].z >= 0.0;
currentPolygon = wirePolygon(
result,
currentPolygon,
positions,
edgesOnPlane,
1,
0,
north,
);
}
return result;
};
PolygonGeometryLibrary.polygonsFromHierarchy = function (
polygonHierarchy,
keepDuplicates,
projectPointsTo2D,
scaleToEllipsoidSurface,
ellipsoid,
splitPolygons,
) {
// create from a polygon hierarchy
// Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
const hierarchy = [];
const polygons = [];
const queue = new Queue();
queue.enqueue(polygonHierarchy);
let split = defined(splitPolygons);
while (queue.length !== 0) {
const outerNode = queue.dequeue();
let outerRing = outerNode.positions;
const holes = outerNode.holes;
let i;
let length;
if (scaleToEllipsoidSurface) {
length = outerRing.length;
for (i = 0; i < length; i++) {
ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]);
}
}
if (!keepDuplicates) {
outerRing = arrayRemoveDuplicates(
outerRing,
Cartesian3.equalsEpsilon,
true,
);
}
if (outerRing.length < 3) {
continue;
}
let positions2D = projectPointsTo2D(outerRing);
if (!defined(positions2D)) {
continue;
}
const holeIndices = [];
let originalWindingOrder =
PolygonPipeline.computeWindingOrder2D(positions2D);
if (originalWindingOrder === WindingOrder.CLOCKWISE) {
positions2D.reverse();
outerRing = outerRing.slice().reverse();
}
if (split) {
split = false;
let polygons = [outerRing];
polygons = splitPolygons(polygons, polygons);
if (polygons.length > 1) {
for (const positions of polygons) {
queue.enqueue(new PolygonHierarchy(positions, holes));
}
continue;
}
}
let positions = outerRing.slice();
const numChildren = defined(holes) ? holes.length : 0;
const polygonHoles = [];
let j;
for (i = 0; i < numChildren; i++) {
const hole = holes[i];
let holePositions = hole.positions;
if (scaleToEllipsoidSurface) {
length = holePositions.length;
for (j = 0; j < length; ++j) {
ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]);
}
}
if (!keepDuplicates) {
holePositions = arrayRemoveDuplicates(
holePositions,
Cartesian3.equalsEpsilon,
true,
);
}
if (holePositions.length < 3) {
continue;
}
const holePositions2D = projectPointsTo2D(holePositions);
if (!defined(holePositions2D)) {
continue;
}
originalWindingOrder =
PolygonPipeline.computeWindingOrder2D(holePositions2D);
if (originalWindingOrder === WindingOrder.CLOCKWISE) {
holePositions2D.reverse();
holePositions = holePositions.slice().reverse();
}
polygonHoles.push(holePositions);
holeIndices.push(positions.length);
positions = positions.concat(holePositions);
positions2D = positions2D.concat(holePositions2D);
let numGrandchildren = 0;
if (defined(hole.holes)) {
numGrandchildren = hole.holes.length;
}
for (j = 0; j < numGrandchildren; j++) {
queue.enqueue(hole.holes[j]);
}
}
hierarchy.push({
outerRing: outerRing,
holes: polygonHoles,
});
polygons.push({
positions: positions,
positions2D: positions2D,
holes: holeIndices,
});
}
return {
hierarchy: hierarchy,
polygons: polygons,
};
};
const computeBoundingRectangleCartesian2 = new Cartesian2();
const computeBoundingRectangleCartesian3 = new Cartesian3();
const computeBoundingRectangleQuaternion = new Quaternion();
const computeBoundingRectangleMatrix3 = new Matrix3();
PolygonGeometryLibrary.computeBoundingRectangle = function (
planeNormal,
projectPointTo2D,
positions,
angle,
result,
) {
const rotation = Quaternion.fromAxisAngle(
planeNormal,
angle,
computeBoundingRectangleQuaternion,
);
const textureMatrix = Matrix3.fromQuaternion(
rotation,
computeBoundingRectangleMatrix3,
);
let minX = Number.POSITIVE_INFINITY;
let maxX = Number.NEGATIVE_INFINITY;
let minY = Number.POSITIVE_INFINITY;
let maxY = Number.NEGATIVE_INFINITY;
const length = positions.length;
for (let i = 0; i < length; ++i) {
const p = Cartesian3.clone(
positions[i],
computeBoundingRectangleCartesian3,
);
Matrix3.multiplyByVector(textureMatrix, p, p);
const st = projectPointTo2D(p, computeBoundingRectangleCartesian2);
if (defined(st)) {
minX = Math.min(minX, st.x);
maxX = Math.max(maxX, st.x);
minY = Math.min(minY, st.y);
maxY = Math.max(maxY, st.y);
}
}
result.x = minX;
result.y = minY;
result.width = maxX - minX;
result.height = maxY - minY;
return result;
};
PolygonGeometryLibrary.createGeometryFromPositions = function (
ellipsoid,
polygon,
textureCoordinates,
granularity,
perPositionHeight,
vertexFormat,
arcType,
) {
let indices = PolygonPipeline.triangulate(polygon.positions2D, polygon.holes);
/* If polygon is completely unrenderable, just use the first three vertices */
if (indices.length < 3) {
indices = [0, 1, 2];
}
const positions = polygon.positions;
const hasTexcoords = defined(textureCoordinates);
const texcoords = hasTexcoords ? textureCoordinates.positions : undefined;
if (perPositionHeight) {
const length = positions.length;
const flattenedPositions = new Array(length * 3);
let index = 0;
for (let i = 0; i < length; i++) {
const p = positions[i];
flattenedPositions[index++] = p.x;
flattenedPositions[index++] = p.y;
flattenedPositions[index++] = p.z;
}
const geometryOptions = {
attributes: {
position: new GeometryAttribute({
componentDatatype: ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: flattenedPositions,
}),
},
indices: indices,
primitiveType: PrimitiveType.TRIANGLES,
};
if (hasTexcoords) {
geometryOptions.attributes.st = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: Cartesian2.packArray(texcoords),
});
}
const geometry = new Geometry(geometryOptions);
if (vertexFormat.normal) {
return GeometryPipeline.computeNormal(geometry);
}
return geometry;
}
if (arcType === ArcType.GEODESIC) {
return PolygonPipeline.computeSubdivision(
ellipsoid,
positions,
indices,
texcoords,
granularity,
);
} else if (arcType === ArcType.RHUMB) {
return PolygonPipeline.computeRhumbLineSubdivision(
ellipsoid,
positions,
indices,
texcoords,
granularity,
);
}
};
const computeWallTexcoordsSubdivided = [];
const computeWallIndicesSubdivided = [];
const p1Scratch = new Cartesian3();
const p2Scratch = new Cartesian3();
PolygonGeometryLibrary.computeWallGeometry = function (
positions,
textureCoordinates,
ellipsoid,
granularity,
perPositionHeight,
arcType,
) {
let edgePositions;
let topEdgeLength;
let i;
let p1;
let p2;
let t1;
let t2;
let edgeTexcoords;
let topEdgeTexcoordLength;
let length = positions.length;
let index = 0;
let textureIndex = 0;
const hasTexcoords = defined(textureCoordinates);
const texcoords = hasTexcoords ? textureCoordinates.positions : undefined;
if (!perPositionHeight) {
const minDistance = CesiumMath.chordLength(
granularity,
ellipsoid.maximumRadius,
);
let numVertices = 0;
if (arcType === ArcType.GEODESIC) {
for (i = 0; i < length; i++) {
numVertices += PolygonGeometryLibrary.subdivideLineCount(
positions[i],
positions[(i + 1) % length],
minDistance,
);
}
} else if (arcType === ArcType.RHUMB) {
for (i = 0; i < length; i++) {
numVertices += PolygonGeometryLibrary.subdivideRhumbLineCount(
ellipsoid,
positions[i],
positions[(i + 1) % length],
minDistance,
);
}
}
topEdgeLength = (numVertices + length) * 3;
edgePositions = new Array(topEdgeLength * 2);
if (hasTexcoords) {
topEdgeTexcoordLength = (numVertices + length) * 2;
edgeTexcoords = new Array(topEdgeTexcoordLength * 2);
}
for (i = 0; i < length; i++) {
p1 = positions[i];
p2 = positions[(i + 1) % length];
let tempPositions;
let tempTexcoords;
if (hasTexcoords) {
t1 = texcoords[i];
t2 = texcoords[(i + 1) % length];
}
if (arcType === ArcType.GEODESIC) {
tempPositions = PolygonGeometryLibrary.subdivideLine(
p1,
p2,
minDistance,
computeWallIndicesSubdivided,
);
if (hasTexcoords) {
tempTexcoords = PolygonGeometryLibrary.subdivideTexcoordLine(
t1,
t2,
p1,
p2,
minDistance,
computeWallTexcoordsSubdivided,
);
}
} else if (arcType === ArcType.RHUMB) {
tempPositions = PolygonGeometryLibrary.subdivideRhumbLine(
ellipsoid,
p1,
p2,
minDistance,
computeWallIndicesSubdivided,
);
if (hasTexcoords) {
tempTexcoords = PolygonGeometryLibrary.subdivideTexcoordRhumbLine(
t1,
t2,
ellipsoid,
p1,
p2,
minDistance,
computeWallTexcoordsSubdivided,
);
}
}
const tempPositionsLength = tempPositions.length;
for (let j = 0; j < tempPositionsLength; ++j, ++index) {
edgePositions[index] = tempPositions[j];
edgePositions[index + topEdgeLength] = tempPositions[j];
}
edgePositions[index] = p2.x;
edgePositions[index + topEdgeLength] = p2.x;
++index;
edgePositions[index] = p2.y;
edgePositions[index + topEdgeLength] = p2.y;
++index;
edgePositions[index] = p2.z;
edgePositions[index + topEdgeLength] = p2.z;
++index;
if (hasTexcoords) {
const tempTexcoordsLength = tempTexcoords.length;
for (let k = 0; k < tempTexcoordsLength; ++k, ++textureIndex) {
edgeTexcoords[textureIndex] = tempTexcoords[k];
edgeTexcoords[textureIndex + topEdgeTexcoordLength] =
tempTexcoords[k];
}
edgeTexcoords[textureIndex] = t2.x;
edgeTexcoords[textureIndex + topEdgeTexcoordLength] = t2.x;
++textureIndex;
edgeTexcoords[textureIndex] = t2.y;
edgeTexcoords[textureIndex + topEdgeTexcoordLength] = t2.y;
++textureIndex;
}
}
} else {
topEdgeLength = length * 3 * 2;
edgePositions = new Array(topEdgeLength * 2);
if (hasTexcoords) {
topEdgeTexcoordLength = length * 2 * 2;
edgeTexcoords = new Array(topEdgeTexcoordLength * 2);
}
for (i = 0; i < length; i++) {
p1 = positions[i];
p2 = positions[(i + 1) % length];
edgePositions[index] = edgePositions[index + topEdgeLength] = p1.x;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p1.y;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p1.z;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p2.x;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p2.y;
++index;
edgePositions[index] = edgePositions[index + topEdgeLength] = p2.z;
++index;
if (hasTexcoords) {
t1 = texcoords[i];
t2 = texcoords[(i + 1) % length];
edgeTexcoords[textureIndex] = edgeTexcoords[
textureIndex + topEdgeTexcoordLength
] = t1.x;
++textureIndex;
edgeTexcoords[textureIndex] = edgeTexcoords[
textureIndex + topEdgeTexcoordLength
] = t1.y;
++textureIndex;
edgeTexcoords[textureIndex] = edgeTexcoords[
textureIndex + topEdgeTexcoordLength
] = t2.x;
++textureIndex;
edgeTexcoords[textureIndex] = edgeTexcoords[
textureIndex + topEdgeTexcoordLength
] = t2.y;
++textureIndex;
}
}
}
length = edgePositions.length;
const indices = IndexDatatype.createTypedArray(
length / 3,
length - positions.length * 6,
);
let edgeIndex = 0;
length /= 6;
for (i = 0; i < length; i++) {
const UL = i;
const UR = UL + 1;
const LL = UL + length;
const LR = LL + 1;
p1 = Cartesian3.fromArray(edgePositions, UL * 3, p1Scratch);
p2 = Cartesian3.fromArray(edgePositions, UR * 3, p2Scratch);
if (
Cartesian3.equalsEpsilon(
p1,
p2,
CesiumMath.EPSILON10,
CesiumMath.EPSILON10,
)
) {
//skip corner
continue;
}
indices[edgeIndex++] = UL;
indices[edgeIndex++] = LL;
indices[edgeIndex++] = UR;
indices[edgeIndex++] = UR;
indices[edgeIndex++] = LL;
indices[edgeIndex++] = LR;
}
const geometryOptions = {
attributes: new GeometryAttributes({
position: new GeometryAttribute({
componentDatatype: ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: edgePositions,
}),
}),
indices: indices,
primitiveType: PrimitiveType.TRIANGLES,
};
if (hasTexcoords) {
geometryOptions.attributes.st = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: edgeTexcoords,
});
}
const geometry = new Geometry(geometryOptions);
return geometry;
};
export default PolygonGeometryLibrary;