@cesium/engine
Version:
CesiumJS is a JavaScript library for creating 3D globes and 2D maps in a web browser without a plugin.
480 lines (426 loc) • 14.7 kB
JavaScript
import BoundingSphere from "./BoundingSphere.js";
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import ComponentDatatype from "./ComponentDatatype.js";
import CylinderGeometryLibrary from "./CylinderGeometryLibrary.js";
import Frozen from "./Frozen.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import Geometry from "./Geometry.js";
import GeometryAttribute from "./GeometryAttribute.js";
import GeometryAttributes from "./GeometryAttributes.js";
import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js";
import IndexDatatype from "./IndexDatatype.js";
import CesiumMath from "./Math.js";
import PrimitiveType from "./PrimitiveType.js";
import VertexFormat from "./VertexFormat.js";
const radiusScratch = new Cartesian2();
const normalScratch = new Cartesian3();
const bitangentScratch = new Cartesian3();
const tangentScratch = new Cartesian3();
const positionScratch = new Cartesian3();
/**
* A description of a cylinder.
*
* @alias CylinderGeometry
* @constructor
*
* @param {object} options Object with the following properties:
* @param {number} options.length The length of the cylinder.
* @param {number} options.topRadius The radius of the top of the cylinder.
* @param {number} options.bottomRadius The radius of the bottom of the cylinder.
* @param {number} [options.slices=128] The number of edges around the perimeter of the cylinder.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
*
* @exception {DeveloperError} options.slices must be greater than or equal to 3.
*
* @see CylinderGeometry.createGeometry
*
* @example
* // create cylinder geometry
* const cylinder = new Cesium.CylinderGeometry({
* length: 200000,
* topRadius: 80000,
* bottomRadius: 200000,
* });
* const geometry = Cesium.CylinderGeometry.createGeometry(cylinder);
*/
function CylinderGeometry(options) {
options = options ?? Frozen.EMPTY_OBJECT;
const length = options.length;
const topRadius = options.topRadius;
const bottomRadius = options.bottomRadius;
const vertexFormat = options.vertexFormat ?? VertexFormat.DEFAULT;
const slices = options.slices ?? 128;
//>>includeStart('debug', pragmas.debug);
if (!defined(length)) {
throw new DeveloperError("options.length must be defined.");
}
if (!defined(topRadius)) {
throw new DeveloperError("options.topRadius must be defined.");
}
if (!defined(bottomRadius)) {
throw new DeveloperError("options.bottomRadius must be defined.");
}
if (slices < 3) {
throw new DeveloperError(
"options.slices must be greater than or equal to 3.",
);
}
if (
defined(options.offsetAttribute) &&
options.offsetAttribute === GeometryOffsetAttribute.TOP
) {
throw new DeveloperError(
"GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry.",
);
}
//>>includeEnd('debug');
this._length = length;
this._topRadius = topRadius;
this._bottomRadius = bottomRadius;
this._vertexFormat = VertexFormat.clone(vertexFormat);
this._slices = slices;
this._offsetAttribute = options.offsetAttribute;
this._workerName = "createCylinderGeometry";
}
/**
* The number of elements used to pack the object into an array.
* @type {number}
*/
CylinderGeometry.packedLength = VertexFormat.packedLength + 5;
/**
* Stores the provided instance into the provided array.
*
* @param {CylinderGeometry} value The value to pack.
* @param {number[]} array The array to pack into.
* @param {number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {number[]} The array that was packed into
*/
CylinderGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError("value is required");
}
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.packedLength;
array[startingIndex++] = value._length;
array[startingIndex++] = value._topRadius;
array[startingIndex++] = value._bottomRadius;
array[startingIndex++] = value._slices;
array[startingIndex] = value._offsetAttribute ?? -1;
return array;
};
const scratchVertexFormat = new VertexFormat();
const scratchOptions = {
vertexFormat: scratchVertexFormat,
length: undefined,
topRadius: undefined,
bottomRadius: undefined,
slices: undefined,
offsetAttribute: undefined,
};
/**
* Retrieves an instance from a packed array.
*
* @param {number[]} array The packed array.
* @param {number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {CylinderGeometry} [result] The object into which to store the result.
* @returns {CylinderGeometry} The modified result parameter or a new CylinderGeometry instance if one was not provided.
*/
CylinderGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = startingIndex ?? 0;
const vertexFormat = VertexFormat.unpack(
array,
startingIndex,
scratchVertexFormat,
);
startingIndex += VertexFormat.packedLength;
const length = array[startingIndex++];
const topRadius = array[startingIndex++];
const bottomRadius = array[startingIndex++];
const slices = array[startingIndex++];
const offsetAttribute = array[startingIndex];
if (!defined(result)) {
scratchOptions.length = length;
scratchOptions.topRadius = topRadius;
scratchOptions.bottomRadius = bottomRadius;
scratchOptions.slices = slices;
scratchOptions.offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return new CylinderGeometry(scratchOptions);
}
result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);
result._length = length;
result._topRadius = topRadius;
result._bottomRadius = bottomRadius;
result._slices = slices;
result._offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return result;
};
/**
* Computes the geometric representation of a cylinder, including its vertices, indices, and a bounding sphere.
*
* @param {CylinderGeometry} cylinderGeometry A description of the cylinder.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
CylinderGeometry.createGeometry = function (cylinderGeometry) {
let length = cylinderGeometry._length;
const topRadius = cylinderGeometry._topRadius;
const bottomRadius = cylinderGeometry._bottomRadius;
const vertexFormat = cylinderGeometry._vertexFormat;
const slices = cylinderGeometry._slices;
if (
length <= 0 ||
topRadius < 0 ||
bottomRadius < 0 ||
(topRadius === 0 && bottomRadius === 0)
) {
return;
}
const twoSlices = slices + slices;
const threeSlices = slices + twoSlices;
const numVertices = twoSlices + twoSlices;
const positions = CylinderGeometryLibrary.computePositions(
length,
topRadius,
bottomRadius,
slices,
true,
);
const st = vertexFormat.st ? new Float32Array(numVertices * 2) : undefined;
const normals = vertexFormat.normal
? new Float32Array(numVertices * 3)
: undefined;
const tangents = vertexFormat.tangent
? new Float32Array(numVertices * 3)
: undefined;
const bitangents = vertexFormat.bitangent
? new Float32Array(numVertices * 3)
: undefined;
let i;
const computeNormal =
vertexFormat.normal || vertexFormat.tangent || vertexFormat.bitangent;
if (computeNormal) {
const computeTangent = vertexFormat.tangent || vertexFormat.bitangent;
let normalIndex = 0;
let tangentIndex = 0;
let bitangentIndex = 0;
const theta = Math.atan2(bottomRadius - topRadius, length);
const normal = normalScratch;
normal.z = Math.sin(theta);
const normalScale = Math.cos(theta);
let tangent = tangentScratch;
let bitangent = bitangentScratch;
for (i = 0; i < slices; i++) {
const angle = (i / slices) * CesiumMath.TWO_PI;
const x = normalScale * Math.cos(angle);
const y = normalScale * Math.sin(angle);
if (computeNormal) {
normal.x = x;
normal.y = y;
if (computeTangent) {
tangent = Cartesian3.normalize(
Cartesian3.cross(Cartesian3.UNIT_Z, normal, tangent),
tangent,
);
}
if (vertexFormat.normal) {
normals[normalIndex++] = normal.x;
normals[normalIndex++] = normal.y;
normals[normalIndex++] = normal.z;
normals[normalIndex++] = normal.x;
normals[normalIndex++] = normal.y;
normals[normalIndex++] = normal.z;
}
if (vertexFormat.tangent) {
tangents[tangentIndex++] = tangent.x;
tangents[tangentIndex++] = tangent.y;
tangents[tangentIndex++] = tangent.z;
tangents[tangentIndex++] = tangent.x;
tangents[tangentIndex++] = tangent.y;
tangents[tangentIndex++] = tangent.z;
}
if (vertexFormat.bitangent) {
bitangent = Cartesian3.normalize(
Cartesian3.cross(normal, tangent, bitangent),
bitangent,
);
bitangents[bitangentIndex++] = bitangent.x;
bitangents[bitangentIndex++] = bitangent.y;
bitangents[bitangentIndex++] = bitangent.z;
bitangents[bitangentIndex++] = bitangent.x;
bitangents[bitangentIndex++] = bitangent.y;
bitangents[bitangentIndex++] = bitangent.z;
}
}
}
for (i = 0; i < slices; i++) {
if (vertexFormat.normal) {
normals[normalIndex++] = 0;
normals[normalIndex++] = 0;
normals[normalIndex++] = -1;
}
if (vertexFormat.tangent) {
tangents[tangentIndex++] = 1;
tangents[tangentIndex++] = 0;
tangents[tangentIndex++] = 0;
}
if (vertexFormat.bitangent) {
bitangents[bitangentIndex++] = 0;
bitangents[bitangentIndex++] = -1;
bitangents[bitangentIndex++] = 0;
}
}
for (i = 0; i < slices; i++) {
if (vertexFormat.normal) {
normals[normalIndex++] = 0;
normals[normalIndex++] = 0;
normals[normalIndex++] = 1;
}
if (vertexFormat.tangent) {
tangents[tangentIndex++] = 1;
tangents[tangentIndex++] = 0;
tangents[tangentIndex++] = 0;
}
if (vertexFormat.bitangent) {
bitangents[bitangentIndex++] = 0;
bitangents[bitangentIndex++] = 1;
bitangents[bitangentIndex++] = 0;
}
}
}
const numIndices = 12 * slices - 12;
const indices = IndexDatatype.createTypedArray(numVertices, numIndices);
let index = 0;
let j = 0;
for (i = 0; i < slices - 1; i++) {
indices[index++] = j;
indices[index++] = j + 2;
indices[index++] = j + 3;
indices[index++] = j;
indices[index++] = j + 3;
indices[index++] = j + 1;
j += 2;
}
indices[index++] = twoSlices - 2;
indices[index++] = 0;
indices[index++] = 1;
indices[index++] = twoSlices - 2;
indices[index++] = 1;
indices[index++] = twoSlices - 1;
for (i = 1; i < slices - 1; i++) {
indices[index++] = twoSlices + i + 1;
indices[index++] = twoSlices + i;
indices[index++] = twoSlices;
}
for (i = 1; i < slices - 1; i++) {
indices[index++] = threeSlices;
indices[index++] = threeSlices + i;
indices[index++] = threeSlices + i + 1;
}
let textureCoordIndex = 0;
if (vertexFormat.st) {
const rad = Math.max(topRadius, bottomRadius);
for (i = 0; i < numVertices; i++) {
const position = Cartesian3.fromArray(positions, i * 3, positionScratch);
st[textureCoordIndex++] = (position.x + rad) / (2.0 * rad);
st[textureCoordIndex++] = (position.y + rad) / (2.0 * rad);
}
}
const attributes = new GeometryAttributes();
if (vertexFormat.position) {
attributes.position = new GeometryAttribute({
componentDatatype: ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: positions,
});
}
if (vertexFormat.normal) {
attributes.normal = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: normals,
});
}
if (vertexFormat.tangent) {
attributes.tangent = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: tangents,
});
}
if (vertexFormat.bitangent) {
attributes.bitangent = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 3,
values: bitangents,
});
}
if (vertexFormat.st) {
attributes.st = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: st,
});
}
radiusScratch.x = length * 0.5;
radiusScratch.y = Math.max(bottomRadius, topRadius);
const boundingSphere = new BoundingSphere(
Cartesian3.ZERO,
Cartesian2.magnitude(radiusScratch),
);
if (defined(cylinderGeometry._offsetAttribute)) {
length = positions.length;
const offsetValue =
cylinderGeometry._offsetAttribute === GeometryOffsetAttribute.NONE
? 0
: 1;
const applyOffset = new Uint8Array(length / 3).fill(offsetValue);
attributes.applyOffset = new GeometryAttribute({
componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset,
});
}
return new Geometry({
attributes: attributes,
indices: indices,
primitiveType: PrimitiveType.TRIANGLES,
boundingSphere: boundingSphere,
offsetAttribute: cylinderGeometry._offsetAttribute,
});
};
let unitCylinderGeometry;
/**
* Returns the geometric representation of a unit cylinder, including its vertices, indices, and a bounding sphere.
* @returns {Geometry} The computed vertices and indices.
*
* @private
*/
CylinderGeometry.getUnitCylinder = function () {
if (!defined(unitCylinderGeometry)) {
unitCylinderGeometry = CylinderGeometry.createGeometry(
new CylinderGeometry({
topRadius: 1.0,
bottomRadius: 1.0,
length: 1.0,
vertexFormat: VertexFormat.POSITION_ONLY,
}),
);
}
return unitCylinderGeometry;
};
export default CylinderGeometry;