UNPKG

@caleblawson/rag

Version:

The Retrieval-Augmented Generation (RAG) module contains document processing and embedding utilities.

138 lines (127 loc) 6.01 kB
import { createTool } from '@mastra/core/tools'; import { z } from 'zod'; import { rerank } from '../rerank'; import type { RerankConfig } from '../rerank'; import { vectorQuerySearch, defaultVectorQueryDescription, filterSchema, outputSchema, baseSchema } from '../utils'; import type { RagTool } from '../utils'; import { convertToSources } from '../utils/convert-sources'; import type { VectorQueryToolOptions } from './types'; export const createVectorQueryTool = (options: VectorQueryToolOptions) => { const { model, id, description } = options; const toolId = id || `VectorQuery ${options.vectorStoreName} ${options.indexName} Tool`; const toolDescription = description || defaultVectorQueryDescription(); const inputSchema = options.enableFilter ? filterSchema : z.object(baseSchema).passthrough(); return createTool({ id: toolId, description: toolDescription, inputSchema, outputSchema, execute: async ({ context, mastra, runtimeContext }) => { const indexName: string = runtimeContext.get('indexName') ?? options.indexName; const vectorStoreName: string = runtimeContext.get('vectorStoreName') ?? options.vectorStoreName; const includeVectors: boolean = runtimeContext.get('includeVectors') ?? options.includeVectors ?? false; const includeSources: boolean = runtimeContext.get('includeSources') ?? options.includeSources ?? true; const reranker: RerankConfig = runtimeContext.get('reranker') ?? options.reranker; const databaseConfig = runtimeContext.get('databaseConfig') ?? options.databaseConfig; if (!indexName) throw new Error(`indexName is required, got: ${indexName}`); if (!vectorStoreName) throw new Error(`vectorStoreName is required, got: ${vectorStoreName}`); const topK: number = runtimeContext.get('topK') ?? context.topK ?? 10; const filter: Record<string, any> = runtimeContext.get('filter') ?? context.filter; const queryText = context.queryText; const enableFilter = !!runtimeContext.get('filter') || (options.enableFilter ?? false); const logger = mastra?.getLogger(); if (!logger) { console.warn( '[VectorQueryTool] Logger not initialized: no debug or error logs will be recorded for this tool execution.', ); } if (logger) { logger.debug('[VectorQueryTool] execute called with:', { queryText, topK, filter, databaseConfig }); } try { const topKValue = typeof topK === 'number' && !isNaN(topK) ? topK : typeof topK === 'string' && !isNaN(Number(topK)) ? Number(topK) : 10; const vectorStore = mastra?.getVector(vectorStoreName); if (!vectorStore) { if (logger) { logger.error('Vector store not found', { vectorStoreName }); } return { relevantContext: [], sources: [] }; } // Get relevant chunks from the vector database let queryFilter = {}; if (enableFilter && filter) { queryFilter = (() => { try { return typeof filter === 'string' ? JSON.parse(filter) : filter; } catch (error) { // Log the error and use empty object if (logger) { logger.warn('Failed to parse filter as JSON, using empty filter', { filter, error }); } return {}; } })(); } if (logger) { logger.debug('Prepared vector query parameters', { queryText, topK: topKValue, queryFilter, databaseConfig }); } const { results } = await vectorQuerySearch({ indexName, vectorStore, queryText, model, queryFilter: Object.keys(queryFilter || {}).length > 0 ? queryFilter : undefined, topK: topKValue, includeVectors, databaseConfig, }); if (logger) { logger.debug('vectorQuerySearch returned results', { count: results.length }); } if (reranker) { if (logger) { logger.debug('Reranking results', { rerankerModel: reranker.model, rerankerOptions: reranker.options }); } const rerankedResults = await rerank(results, queryText, reranker.model, { ...reranker.options, topK: reranker.options?.topK || topKValue, }); if (logger) { logger.debug('Reranking complete', { rerankedCount: rerankedResults.length }); } const relevantChunks = rerankedResults.map(({ result }) => result?.metadata); if (logger) { logger.debug('Returning reranked relevant context chunks', { count: relevantChunks.length }); } const sources = includeSources ? convertToSources(rerankedResults) : []; return { relevantContext: relevantChunks, sources }; } const relevantChunks = results.map(result => result?.metadata); if (logger) { logger.debug('Returning relevant context chunks', { count: relevantChunks.length }); } // `sources` exposes the full retrieval objects const sources = includeSources ? convertToSources(results) : []; return { relevantContext: relevantChunks, sources, }; } catch (err) { if (logger) { logger.error('Unexpected error in VectorQueryTool execute', { error: err, errorMessage: err instanceof Error ? err.message : String(err), errorStack: err instanceof Error ? err.stack : undefined, }); } return { relevantContext: [], sources: [] }; } }, // Use any for output schema as the structure of the output causes type inference issues }) as RagTool<typeof inputSchema, any>; };