UNPKG

@budibase/server

Version:
136 lines (119 loc) 3.33 kB
import _ from "lodash" import { ai } from "@budibase/pro" import { MockLLMResponseFn, MockLLMResponseOpts } from "." import { getPool } from "../../../../tests/jestEnv" let chatID = 1 const SPACE_REGEX = /\s+/g interface Message { role: string content: string } interface Choice { index: number message: Message logprobs: null finish_reason: string } interface CompletionTokensDetails { reasoning_tokens: number accepted_prediction_tokens: number rejected_prediction_tokens: number } interface Usage { prompt_tokens: number completion_tokens: number total_tokens: number completion_tokens_details: CompletionTokensDetails } interface ChatCompletionResponse { id: string object: string created: number model: string system_fingerprint: string choices: Choice[] usage: Usage } function parseJsonBody(body: unknown) { if (typeof body === "string") return JSON.parse(body) if (body && typeof (body as any).toString === "function") { const s = String(body) try { return JSON.parse(s) } catch { /* ignore */ } } return {} } export const mockAzureOpenAIResponse: MockLLMResponseFn = ( answer: string | ((prompt: string) => string), opts?: MockLLMResponseOpts ) => { const origin = opts?.baseUrl || "https://api.azure.com" const pool = getPool(origin) const expectedFormat = opts?.format ? _.matches({ response_format: ai.parseResponseFormat(opts.format as any), }) : null const interceptor = pool.intercept({ path: /\/deployments\/.*?\/chat\/completions/, method: "POST", }) interceptor.defaultReplyHeaders?.({ "content-type": "application/json", }) interceptor.reply(200, reqOpts => { const reqBody = parseJsonBody(reqOpts.body) if (expectedFormat && !expectedFormat(reqBody)) { return { error: { message: "Unexpected response_format in request body" }, } } const messages = reqBody?.messages as Message[] const prompt = messages[0]?.content || "" let content if (typeof answer === "function") { try { content = answer(prompt) } catch (e) { return [500, "Internal Server Error"] } } else { content = answer } chatID++ // We mock token usage because we use it to calculate Budibase AI quota // usage when Budibase AI is enabled, and some tests assert against quota // usage to make sure we're tracking correctly. const prompt_tokens = messages[0].content.split(SPACE_REGEX).length const completion_tokens = content.split(SPACE_REGEX).length const response: ChatCompletionResponse = { id: `chatcmpl-${chatID}`, object: "chat.completion", created: Math.floor(Date.now() / 1000), model: reqBody.model, system_fingerprint: `fp_${chatID}`, choices: [ { index: 0, message: { role: "assistant", content }, logprobs: null, finish_reason: "stop", }, ], usage: { prompt_tokens, completion_tokens, total_tokens: prompt_tokens + completion_tokens, completion_tokens_details: { reasoning_tokens: 0, accepted_prediction_tokens: 0, rejected_prediction_tokens: 0, }, }, } return response }) }