UNPKG

@bsv/sdk

Version:

BSV Blockchain Software Development Kit

442 lines (365 loc) 12.5 kB
// @ts-nocheck const SBox = new Uint8Array([ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 ]) const Rcon = [ [0x00, 0x00, 0x00, 0x00], [0x01, 0x00, 0x00, 0x00], [0x02, 0x00, 0x00, 0x00], [0x04, 0x00, 0x00, 0x00], [0x08, 0x00, 0x00, 0x00], [0x10, 0x00, 0x00, 0x00], [0x20, 0x00, 0x00, 0x00], [0x40, 0x00, 0x00, 0x00], [0x80, 0x00, 0x00, 0x00], [0x1b, 0x00, 0x00, 0x00], [0x36, 0x00, 0x00, 0x00] ].map(v => new Uint8Array(v)) const mul2 = new Uint8Array(256) const mul3 = new Uint8Array(256) for (let i = 0; i < 256; i++) { const m2 = ((i << 1) ^ ((i & 0x80) !== 0 ? 0x1b : 0)) & 0xff mul2[i] = m2 mul3[i] = m2 ^ i } function addRoundKey ( state: number[][], roundKeyArray: number[][], offset: number ): void { for (let c = 0; c < 4; c++) { const keyCol = roundKeyArray[offset + c] for (let r = 0; r < 4; r++) { state[r][c] ^= keyCol[r] } } } function subBytes (state: number[][]): void { for (let r = 0; r < 4; r++) { for (let c = 0; c < 4; c++) { state[r][c] = SBox[state[r][c]] } } } function subWord (value: number[]): void { for (let i = 0; i < 4; i++) { value[i] = SBox[value[i]] } } function rotWord (value: number[]): void { const temp = value[0] value[0] = value[1] value[1] = value[2] value[2] = value[3] value[3] = temp } function shiftRows (state: number[][]): void { let tmp = state[1][0] state[1][0] = state[1][1] state[1][1] = state[1][2] state[1][2] = state[1][3] state[1][3] = tmp tmp = state[2][0] const tmp2 = state[2][1] state[2][0] = state[2][2] state[2][1] = state[2][3] state[2][2] = tmp state[2][3] = tmp2 tmp = state[3][3] state[3][3] = state[3][2] state[3][2] = state[3][1] state[3][1] = state[3][0] state[3][0] = tmp } function mixColumns (state: number[][]): void { for (let c = 0; c < 4; c++) { const s0 = state[0][c] const s1 = state[1][c] const s2 = state[2][c] const s3 = state[3][c] state[0][c] = mul2[s0] ^ mul3[s1] ^ s2 ^ s3 state[1][c] = s0 ^ mul2[s1] ^ mul3[s2] ^ s3 state[2][c] = s0 ^ s1 ^ mul2[s2] ^ mul3[s3] state[3][c] = mul3[s0] ^ s1 ^ s2 ^ mul2[s3] } } function keyExpansion (roundLimit: number, key: number[]): number[][] { const nK = key.length / 4 const result: number[][] = [] for (let i = 0; i < key.length; i++) { if (i % 4 === 0) result.push([]) result[i >> 2].push(key[i]) } for (let i = nK; i < 4 * roundLimit; i++) { result[i] = [] const temp = result[i - 1].slice() if (i % nK === 0) { rotWord(temp) subWord(temp) const r = Rcon[i / nK] for (let j = 0; j < 4; j++) { temp[j] ^= r[j] } } else if (nK > 6 && (i % nK) === 4) { subWord(temp) } for (let j = 0; j < 4; j++) { result[i][j] = result[i - nK][j] ^ temp[j] } } return result } export function AES (input: number[], key: number[]): number[] { let i let j let round: number let roundLimit const state = [[], [], [], []] const output = [] // Since the BigNumber representation of keys ignores big endian zeroes, // extend incoming key arrays with zeros to the smallest standard key size. const ekey = Array.from(key) if (ekey.length <= 16) { while (ekey.length < 16) ekey.unshift(0) roundLimit = 11 } else if (ekey.length <= 24) { while (ekey.length < 24) ekey.unshift(0) roundLimit = 13 } else if (key.length <= 32) { while (ekey.length < 32) ekey.unshift(0) roundLimit = 15 } else { throw new Error('Illegal key length: ' + String(key.length)) } const w = keyExpansion(roundLimit, ekey) for (let c = 0; c < 4; c++) { state[0][c] = input[c * 4] state[1][c] = input[c * 4 + 1] state[2][c] = input[c * 4 + 2] state[3][c] = input[c * 4 + 3] } addRoundKey(state, w, 0) for (round = 1; round < roundLimit; round++) { subBytes(state) shiftRows(state) if (round + 1 < roundLimit) { mixColumns(state) } addRoundKey(state, w, round * 4) } for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { output.push(state[j][i]) } } return output } export const checkBit = function ( byteArray: number[], byteIndex: number, bitIndex: number ): 1 | 0 { return (byteArray[byteIndex] & (0x01 << bitIndex)) !== 0 ? 1 : 0 } export const getBytes = function (numericValue: number): number[] { return [ (numericValue & 0xFF000000) >>> 24, (numericValue & 0x00FF0000) >> 16, (numericValue & 0x0000FF00) >> 8, numericValue & 0x000000FF ] } const createZeroBlock = function (length: number): number[] { return new Array(length).fill(0) } const R = [0xe1].concat(createZeroBlock(15)) export const exclusiveOR = function (block0: number[], block1: number[]): number[] { const len = block0.length const result = new Array(len) for (let i = 0; i < len; i++) { result[i] = block0[i] ^ block1[i] } return result } const xorInto = function (target: number[], block: number[]): void { for (let i = 0; i < target.length; i++) { target[i] ^= block[i] } } export const rightShift = function (block: number[]): number[] { let i: number let carry = 0 let oldCarry = 0 for (i = 0; i < block.length; i++) { oldCarry = carry carry = block[i] & 0x01 block[i] = block[i] >> 1 if (oldCarry !== 0) { block[i] = block[i] | 0x80 } } return block } export const multiply = function (block0: number[], block1: number[]): number[] { const v = block1.slice() const z = createZeroBlock(16) for (let i = 0; i < 16; i++) { for (let j = 7; j >= 0; j--) { if ((block0[i] & (1 << j)) !== 0) { xorInto(z, v) } if ((v[15] & 1) !== 0) { rightShift(v) xorInto(v, R) } else { rightShift(v) } } } return z } export const incrementLeastSignificantThirtyTwoBits = function ( block: number[] ): number[] { let i const result = block.slice() for (i = 15; i !== 11; i--) { result[i] = result[i] + 1 if (result[i] === 256) { result[i] = 0 } else { break } } return result } export function ghash (input: number[], hashSubKey: number[]): number[] { let result = createZeroBlock(16) for (let i = 0; i < input.length; i += 16) { const block = result.slice() for (let j = 0; j < 16; j++) { block[j] ^= input[i + j] ?? 0 } result = multiply(block, hashSubKey) } return result } function gctr ( input: number[], initialCounterBlock: number[], key: number[] ): number[] { if (input.length === 0) return [] const output = new Array(input.length) let counterBlock = initialCounterBlock let pos = 0 const n = Math.ceil(input.length / 16) for (let i = 0; i < n; i++) { const counter = AES(counterBlock, key) const chunk = Math.min(16, input.length - pos) for (let j = 0; j < chunk; j++) { output[pos] = input[pos] ^ counter[j] pos++ } if (i + 1 < n) { counterBlock = incrementLeastSignificantThirtyTwoBits(counterBlock) } } return output } export function AESGCM ( plainText: number[], additionalAuthenticatedData: number[], initializationVector: number[], key: number[] ): { result: number[], authenticationTag: number[] } { let preCounterBlock let plainTag const hashSubKey = AES(createZeroBlock(16), key) preCounterBlock = [...initializationVector] if (initializationVector.length === 12) { preCounterBlock = preCounterBlock.concat(createZeroBlock(3)).concat([0x01]) } else { if (initializationVector.length % 16 !== 0) { preCounterBlock = preCounterBlock.concat( createZeroBlock(16 - (initializationVector.length % 16)) ) } preCounterBlock = preCounterBlock.concat(createZeroBlock(8)) preCounterBlock = ghash(preCounterBlock.concat(createZeroBlock(4)) .concat(getBytes(initializationVector.length * 8)), hashSubKey) } const cipherText = gctr(plainText, incrementLeastSignificantThirtyTwoBits(preCounterBlock), key) plainTag = additionalAuthenticatedData.slice() if (additionalAuthenticatedData.length === 0) { plainTag = plainTag.concat(createZeroBlock(16)) } else if (additionalAuthenticatedData.length % 16 !== 0) { plainTag = plainTag.concat(createZeroBlock(16 - (additionalAuthenticatedData.length % 16))) } plainTag = plainTag.concat(cipherText) if (cipherText.length === 0) { plainTag = plainTag.concat(createZeroBlock(16)) } else if (cipherText.length % 16 !== 0) { plainTag = plainTag.concat(createZeroBlock(16 - (cipherText.length % 16))) } plainTag = plainTag.concat(createZeroBlock(4)) .concat(getBytes(additionalAuthenticatedData.length * 8)) .concat(createZeroBlock(4)).concat(getBytes(cipherText.length * 8)) return { result: cipherText, authenticationTag: gctr(ghash(plainTag, hashSubKey), preCounterBlock, key) } } export function AESGCMDecrypt ( cipherText: number[], additionalAuthenticatedData: number[], initializationVector: number[], authenticationTag: number[], key: number[] ): number[] | null { let preCounterBlock let compareTag // Generate the hash subkey const hashSubKey = AES(createZeroBlock(16), key) preCounterBlock = [...initializationVector] if (initializationVector.length === 12) { preCounterBlock = preCounterBlock.concat(createZeroBlock(3)).concat([0x01]) } else { if (initializationVector.length % 16 !== 0) { preCounterBlock = preCounterBlock.concat(createZeroBlock(16 - (initializationVector.length % 16))) } preCounterBlock = preCounterBlock.concat(createZeroBlock(8)) preCounterBlock = ghash(preCounterBlock.concat(createZeroBlock(4)).concat(getBytes(initializationVector.length * 8)), hashSubKey) } // Decrypt to obtain the plain text const plainText = gctr(cipherText, incrementLeastSignificantThirtyTwoBits(preCounterBlock), key) compareTag = additionalAuthenticatedData.slice() if (additionalAuthenticatedData.length === 0) { compareTag = compareTag.concat(createZeroBlock(16)) } else if (additionalAuthenticatedData.length % 16 !== 0) { compareTag = compareTag.concat(createZeroBlock(16 - (additionalAuthenticatedData.length % 16))) } compareTag = compareTag.concat(cipherText) if (cipherText.length === 0) { compareTag = compareTag.concat(createZeroBlock(16)) } else if (cipherText.length % 16 !== 0) { compareTag = compareTag.concat(createZeroBlock(16 - (cipherText.length % 16))) } compareTag = compareTag.concat(createZeroBlock(4)) .concat(getBytes(additionalAuthenticatedData.length * 8)) .concat(createZeroBlock(4)).concat(getBytes(cipherText.length * 8)) // Generate the authentication tag const calculatedTag = gctr(ghash(compareTag, hashSubKey), preCounterBlock, key) // If the calculated tag does not match the provided tag, return null - the decryption failed. if (calculatedTag.join() !== authenticationTag.join()) { return null } return plainText }