@babylonjs/loaders
Version:
For usage documentation please visit https://doc.babylonjs.com/features/featuresDeepDive/importers/loadingFileTypes/.
1,296 lines (1,295 loc) • 73.2 kB
JavaScript
import { EParameterType, ETextureFilterType, ECullingType, EBlendingFunction, EShaderType } from "./glTFLoaderInterfaces.js";
import { Quaternion, Vector3, Matrix } from "@babylonjs/core/Maths/math.vector.js";
import { Color3 } from "@babylonjs/core/Maths/math.color.js";
import { Tools } from "@babylonjs/core/Misc/tools.js";
import { Camera } from "@babylonjs/core/Cameras/camera.js";
import { FreeCamera } from "@babylonjs/core/Cameras/freeCamera.js";
import { Animation } from "@babylonjs/core/Animations/animation.js";
import { Bone } from "@babylonjs/core/Bones/bone.js";
import { Skeleton } from "@babylonjs/core/Bones/skeleton.js";
import { Effect } from "@babylonjs/core/Materials/effect.js";
import { Material } from "@babylonjs/core/Materials/material.js";
import { MultiMaterial } from "@babylonjs/core/Materials/multiMaterial.js";
import { StandardMaterial } from "@babylonjs/core/Materials/standardMaterial.js";
import { ShaderMaterial } from "@babylonjs/core/Materials/shaderMaterial.js";
import { Texture } from "@babylonjs/core/Materials/Textures/texture.js";
import { VertexData } from "@babylonjs/core/Meshes/mesh.vertexData.js";
import { VertexBuffer } from "@babylonjs/core/Buffers/buffer.js";
import { Geometry } from "@babylonjs/core/Meshes/geometry.js";
import { SubMesh } from "@babylonjs/core/Meshes/subMesh.js";
import { AbstractMesh } from "@babylonjs/core/Meshes/abstractMesh.js";
import { Mesh } from "@babylonjs/core/Meshes/mesh.js";
import { HemisphericLight } from "@babylonjs/core/Lights/hemisphericLight.js";
import { DirectionalLight } from "@babylonjs/core/Lights/directionalLight.js";
import { PointLight } from "@babylonjs/core/Lights/pointLight.js";
import { SpotLight } from "@babylonjs/core/Lights/spotLight.js";
import { GLTFUtils } from "./glTFLoaderUtils.js";
import { GLTFFileLoader } from "../glTFFileLoader.js";
import { Constants } from "@babylonjs/core/Engines/constants.js";
/**
* Tokenizer. Used for shaders compatibility
* Automatically map world, view, projection, worldViewProjection, attributes and so on
*/
// eslint-disable-next-line @typescript-eslint/naming-convention
var ETokenType;
(function (ETokenType) {
ETokenType[ETokenType["IDENTIFIER"] = 1] = "IDENTIFIER";
ETokenType[ETokenType["UNKNOWN"] = 2] = "UNKNOWN";
ETokenType[ETokenType["END_OF_INPUT"] = 3] = "END_OF_INPUT";
})(ETokenType || (ETokenType = {}));
class Tokenizer {
constructor(toParse) {
this._pos = 0;
this.currentToken = ETokenType.UNKNOWN;
this.currentIdentifier = "";
this.currentString = "";
this.isLetterOrDigitPattern = /^[a-zA-Z0-9]+$/;
this._toParse = toParse;
this._maxPos = toParse.length;
}
getNextToken() {
if (this.isEnd()) {
return ETokenType.END_OF_INPUT;
}
this.currentString = this.read();
this.currentToken = ETokenType.UNKNOWN;
if (this.currentString === "_" || this.isLetterOrDigitPattern.test(this.currentString)) {
this.currentToken = ETokenType.IDENTIFIER;
this.currentIdentifier = this.currentString;
while (!this.isEnd() && (this.isLetterOrDigitPattern.test((this.currentString = this.peek())) || this.currentString === "_")) {
this.currentIdentifier += this.currentString;
this.forward();
}
}
return this.currentToken;
}
peek() {
return this._toParse[this._pos];
}
read() {
return this._toParse[this._pos++];
}
forward() {
this._pos++;
}
isEnd() {
return this._pos >= this._maxPos;
}
}
/**
* Values
*/
// eslint-disable-next-line @typescript-eslint/naming-convention
const glTFTransforms = ["MODEL", "VIEW", "PROJECTION", "MODELVIEW", "MODELVIEWPROJECTION", "JOINTMATRIX"];
const BabylonTransforms = ["world", "view", "projection", "worldView", "worldViewProjection", "mBones"];
// eslint-disable-next-line @typescript-eslint/naming-convention
const glTFAnimationPaths = ["translation", "rotation", "scale"];
const BabylonAnimationPaths = ["position", "rotationQuaternion", "scaling"];
/**
* Parse
* @param parsedBuffers
* @param gltfRuntime
*/
const ParseBuffers = (parsedBuffers, gltfRuntime) => {
for (const buf in parsedBuffers) {
const parsedBuffer = parsedBuffers[buf];
gltfRuntime.buffers[buf] = parsedBuffer;
gltfRuntime.buffersCount++;
}
};
const ParseShaders = (parsedShaders, gltfRuntime) => {
for (const sha in parsedShaders) {
const parsedShader = parsedShaders[sha];
gltfRuntime.shaders[sha] = parsedShader;
gltfRuntime.shaderscount++;
}
};
const ParseObject = (parsedObjects, runtimeProperty, gltfRuntime) => {
for (const object in parsedObjects) {
const parsedObject = parsedObjects[object];
gltfRuntime[runtimeProperty][object] = parsedObject;
}
};
/**
* Utils
* @param buffer
*/
const NormalizeUVs = (buffer) => {
if (!buffer) {
return;
}
for (let i = 0; i < buffer.length / 2; i++) {
buffer[i * 2 + 1] = 1.0 - buffer[i * 2 + 1];
}
};
const GetAttribute = (attributeParameter) => {
if (attributeParameter.semantic === "NORMAL") {
return "normal";
}
else if (attributeParameter.semantic === "POSITION") {
return "position";
}
else if (attributeParameter.semantic === "JOINT") {
return "matricesIndices";
}
else if (attributeParameter.semantic === "WEIGHT") {
return "matricesWeights";
}
else if (attributeParameter.semantic === "COLOR") {
return "color";
}
else if (attributeParameter.semantic && attributeParameter.semantic.indexOf("TEXCOORD_") !== -1) {
const channel = Number(attributeParameter.semantic.split("_")[1]);
return "uv" + (channel === 0 ? "" : channel + 1);
}
return null;
};
/**
* Loads and creates animations
* @param gltfRuntime
*/
const LoadAnimations = (gltfRuntime) => {
for (const anim in gltfRuntime.animations) {
const animation = gltfRuntime.animations[anim];
if (!animation.channels || !animation.samplers) {
continue;
}
let lastAnimation = null;
for (let i = 0; i < animation.channels.length; i++) {
// Get parameters and load buffers
const channel = animation.channels[i];
const sampler = animation.samplers[channel.sampler];
if (!sampler) {
continue;
}
let inputData = null;
let outputData = null;
if (animation.parameters) {
inputData = animation.parameters[sampler.input];
outputData = animation.parameters[sampler.output];
}
else {
inputData = sampler.input;
outputData = sampler.output;
}
const bufferInput = GLTFUtils.GetBufferFromAccessor(gltfRuntime, gltfRuntime.accessors[inputData]);
const bufferOutput = GLTFUtils.GetBufferFromAccessor(gltfRuntime, gltfRuntime.accessors[outputData]);
const targetId = channel.target.id;
let targetNode = gltfRuntime.scene.getNodeById(targetId);
if (targetNode === null) {
targetNode = gltfRuntime.scene.getNodeByName(targetId);
}
if (targetNode === null) {
Tools.Warn("Creating animation named " + anim + ". But cannot find node named " + targetId + " to attach to");
continue;
}
const isBone = targetNode instanceof Bone;
// Get target path (position, rotation or scaling)
let targetPath = channel.target.path;
const targetPathIndex = glTFAnimationPaths.indexOf(targetPath);
if (targetPathIndex !== -1) {
targetPath = BabylonAnimationPaths[targetPathIndex];
}
// Determine animation type
let animationType = Animation.ANIMATIONTYPE_MATRIX;
if (!isBone) {
if (targetPath === "rotationQuaternion") {
animationType = Animation.ANIMATIONTYPE_QUATERNION;
targetNode.rotationQuaternion = new Quaternion();
}
else {
animationType = Animation.ANIMATIONTYPE_VECTOR3;
}
}
// Create animation and key frames
let babylonAnimation = null;
const keys = [];
let arrayOffset = 0;
let modifyKey = false;
if (isBone && lastAnimation && lastAnimation.getKeys().length === bufferInput.length) {
babylonAnimation = lastAnimation;
modifyKey = true;
}
if (!modifyKey) {
gltfRuntime.scene._blockEntityCollection = !!gltfRuntime.assetContainer;
babylonAnimation = new Animation(anim, isBone ? "_matrix" : targetPath, 1, animationType, Animation.ANIMATIONLOOPMODE_CYCLE);
gltfRuntime.scene._blockEntityCollection = false;
}
// For each frame
for (let j = 0; j < bufferInput.length; j++) {
let value = null;
if (targetPath === "rotationQuaternion") {
// VEC4
value = Quaternion.FromArray([bufferOutput[arrayOffset], bufferOutput[arrayOffset + 1], bufferOutput[arrayOffset + 2], bufferOutput[arrayOffset + 3]]);
arrayOffset += 4;
}
else {
// Position and scaling are VEC3
value = Vector3.FromArray([bufferOutput[arrayOffset], bufferOutput[arrayOffset + 1], bufferOutput[arrayOffset + 2]]);
arrayOffset += 3;
}
if (isBone) {
const bone = targetNode;
let translation = Vector3.Zero();
let rotationQuaternion = new Quaternion();
let scaling = Vector3.Zero();
// Warning on decompose
let mat = bone.getBaseMatrix();
if (modifyKey && lastAnimation) {
mat = lastAnimation.getKeys()[j].value;
}
mat.decompose(scaling, rotationQuaternion, translation);
if (targetPath === "position") {
translation = value;
}
else if (targetPath === "rotationQuaternion") {
rotationQuaternion = value;
}
else {
scaling = value;
}
value = Matrix.Compose(scaling, rotationQuaternion, translation);
}
if (!modifyKey) {
keys.push({
frame: bufferInput[j],
value: value,
});
}
else if (lastAnimation) {
lastAnimation.getKeys()[j].value = value;
}
}
// Finish
if (!modifyKey && babylonAnimation) {
babylonAnimation.setKeys(keys);
targetNode.animations.push(babylonAnimation);
}
lastAnimation = babylonAnimation;
gltfRuntime.scene.stopAnimation(targetNode);
gltfRuntime.scene.beginAnimation(targetNode, 0, bufferInput[bufferInput.length - 1], true, 1.0);
}
}
};
/**
* @returns the bones transformation matrix
* @param node
*/
const ConfigureBoneTransformation = (node) => {
let mat = null;
if (node.translation || node.rotation || node.scale) {
const scale = Vector3.FromArray(node.scale || [1, 1, 1]);
const rotation = Quaternion.FromArray(node.rotation || [0, 0, 0, 1]);
const position = Vector3.FromArray(node.translation || [0, 0, 0]);
mat = Matrix.Compose(scale, rotation, position);
}
else {
mat = Matrix.FromArray(node.matrix);
}
return mat;
};
/**
* Returns the parent bone
* @param gltfRuntime
* @param skins
* @param jointName
* @param newSkeleton
* @returns the parent bone
*/
const GetParentBone = (gltfRuntime, skins, jointName, newSkeleton) => {
// Try to find
for (let i = 0; i < newSkeleton.bones.length; i++) {
if (newSkeleton.bones[i].name === jointName) {
return newSkeleton.bones[i];
}
}
// Not found, search in gltf nodes
const nodes = gltfRuntime.nodes;
for (const nde in nodes) {
const node = nodes[nde];
if (!node.jointName) {
continue;
}
const children = node.children;
for (let i = 0; i < children.length; i++) {
const child = gltfRuntime.nodes[children[i]];
if (!child.jointName) {
continue;
}
if (child.jointName === jointName) {
const mat = ConfigureBoneTransformation(node);
const bone = new Bone(node.name || "", newSkeleton, GetParentBone(gltfRuntime, skins, node.jointName, newSkeleton), mat);
bone.id = nde;
return bone;
}
}
}
return null;
};
/**
* Returns the appropriate root node
* @param nodesToRoot
* @param id
* @returns the root node
*/
const GetNodeToRoot = (nodesToRoot, id) => {
for (let i = 0; i < nodesToRoot.length; i++) {
const nodeToRoot = nodesToRoot[i];
for (let j = 0; j < nodeToRoot.node.children.length; j++) {
const child = nodeToRoot.node.children[j];
if (child === id) {
return nodeToRoot.bone;
}
}
}
return null;
};
/**
* Returns the node with the joint name
* @param gltfRuntime
* @param jointName
* @returns the node with the joint name
*/
const GetJointNode = (gltfRuntime, jointName) => {
const nodes = gltfRuntime.nodes;
let node = nodes[jointName];
if (node) {
return {
node: node,
id: jointName,
};
}
for (const nde in nodes) {
node = nodes[nde];
if (node.jointName === jointName) {
return {
node: node,
id: nde,
};
}
}
return null;
};
/**
* Checks if a nodes is in joints
* @param skins
* @param id
* @returns true if the node is in joints, else false
*/
const NodeIsInJoints = (skins, id) => {
for (let i = 0; i < skins.jointNames.length; i++) {
if (skins.jointNames[i] === id) {
return true;
}
}
return false;
};
/**
* Fills the nodes to root for bones and builds hierarchy
* @param gltfRuntime
* @param newSkeleton
* @param skins
* @param nodesToRoot
*/
const GetNodesToRoot = (gltfRuntime, newSkeleton, skins, nodesToRoot) => {
// Creates nodes for root
for (const nde in gltfRuntime.nodes) {
const node = gltfRuntime.nodes[nde];
const id = nde;
if (!node.jointName || NodeIsInJoints(skins, node.jointName)) {
continue;
}
// Create node to root bone
const mat = ConfigureBoneTransformation(node);
const bone = new Bone(node.name || "", newSkeleton, null, mat);
bone.id = id;
nodesToRoot.push({ bone: bone, node: node, id: id });
}
// Parenting
for (let i = 0; i < nodesToRoot.length; i++) {
const nodeToRoot = nodesToRoot[i];
const children = nodeToRoot.node.children;
for (let j = 0; j < children.length; j++) {
let child = null;
for (let k = 0; k < nodesToRoot.length; k++) {
if (nodesToRoot[k].id === children[j]) {
child = nodesToRoot[k];
break;
}
}
if (child) {
child.bone._parent = nodeToRoot.bone;
nodeToRoot.bone.children.push(child.bone);
}
}
}
};
/**
* Imports a skeleton
* @param gltfRuntime
* @param skins
* @param mesh
* @param newSkeleton
* @returns the bone name
*/
const ImportSkeleton = (gltfRuntime, skins, mesh, newSkeleton) => {
if (!newSkeleton) {
newSkeleton = new Skeleton(skins.name || "", "", gltfRuntime.scene);
}
if (!skins.babylonSkeleton) {
return newSkeleton;
}
// Find the root bones
const nodesToRoot = [];
const nodesToRootToAdd = [];
GetNodesToRoot(gltfRuntime, newSkeleton, skins, nodesToRoot);
newSkeleton.bones = [];
// Joints
for (let i = 0; i < skins.jointNames.length; i++) {
const jointNode = GetJointNode(gltfRuntime, skins.jointNames[i]);
if (!jointNode) {
continue;
}
const node = jointNode.node;
if (!node) {
Tools.Warn("Joint named " + skins.jointNames[i] + " does not exist");
continue;
}
const id = jointNode.id;
// Optimize, if the bone already exists...
const existingBone = gltfRuntime.scene.getBoneById(id);
if (existingBone) {
newSkeleton.bones.push(existingBone);
continue;
}
// Search for parent bone
let foundBone = false;
let parentBone = null;
for (let j = 0; j < i; j++) {
const jointNode = GetJointNode(gltfRuntime, skins.jointNames[j]);
if (!jointNode) {
continue;
}
const joint = jointNode.node;
if (!joint) {
Tools.Warn("Joint named " + skins.jointNames[j] + " does not exist when looking for parent");
continue;
}
const children = joint.children;
if (!children) {
continue;
}
foundBone = false;
for (let k = 0; k < children.length; k++) {
if (children[k] === id) {
parentBone = GetParentBone(gltfRuntime, skins, skins.jointNames[j], newSkeleton);
foundBone = true;
break;
}
}
if (foundBone) {
break;
}
}
// Create bone
const mat = ConfigureBoneTransformation(node);
if (!parentBone && nodesToRoot.length > 0) {
parentBone = GetNodeToRoot(nodesToRoot, id);
if (parentBone) {
if (nodesToRootToAdd.indexOf(parentBone) === -1) {
nodesToRootToAdd.push(parentBone);
}
}
}
const bone = new Bone(node.jointName || "", newSkeleton, parentBone, mat);
bone.id = id;
}
// Polish
const bones = newSkeleton.bones;
newSkeleton.bones = [];
for (let i = 0; i < skins.jointNames.length; i++) {
const jointNode = GetJointNode(gltfRuntime, skins.jointNames[i]);
if (!jointNode) {
continue;
}
for (let j = 0; j < bones.length; j++) {
if (bones[j].id === jointNode.id) {
newSkeleton.bones.push(bones[j]);
break;
}
}
}
newSkeleton.prepare();
// Finish
for (let i = 0; i < nodesToRootToAdd.length; i++) {
newSkeleton.bones.push(nodesToRootToAdd[i]);
}
return newSkeleton;
};
/**
* Imports a mesh and its geometries
* @param gltfRuntime
* @param node
* @param meshes
* @param id
* @param newMesh
* @returns the new mesh
*/
const ImportMesh = (gltfRuntime, node, meshes, id, newMesh) => {
if (!newMesh) {
gltfRuntime.scene._blockEntityCollection = !!gltfRuntime.assetContainer;
newMesh = new Mesh(node.name || "", gltfRuntime.scene);
newMesh._parentContainer = gltfRuntime.assetContainer;
gltfRuntime.scene._blockEntityCollection = false;
newMesh.id = id;
}
if (!node.babylonNode) {
return newMesh;
}
const subMaterials = [];
let vertexData = null;
const verticesStarts = [];
const verticesCounts = [];
const indexStarts = [];
const indexCounts = [];
for (let meshIndex = 0; meshIndex < meshes.length; meshIndex++) {
const meshId = meshes[meshIndex];
const mesh = gltfRuntime.meshes[meshId];
if (!mesh) {
continue;
}
// Positions, normals and UVs
for (let i = 0; i < mesh.primitives.length; i++) {
// Temporary vertex data
const tempVertexData = new VertexData();
const primitive = mesh.primitives[i];
if (primitive.mode !== 4) {
// continue;
}
const attributes = primitive.attributes;
let accessor = null;
let buffer = null;
// Set positions, normal and uvs
for (const semantic in attributes) {
// Link accessor and buffer view
accessor = gltfRuntime.accessors[attributes[semantic]];
buffer = GLTFUtils.GetBufferFromAccessor(gltfRuntime, accessor);
if (semantic === "NORMAL") {
tempVertexData.normals = new Float32Array(buffer.length);
tempVertexData.normals.set(buffer);
}
else if (semantic === "POSITION") {
if (GLTFFileLoader.HomogeneousCoordinates) {
tempVertexData.positions = new Float32Array(buffer.length - buffer.length / 4);
for (let j = 0; j < buffer.length; j += 4) {
tempVertexData.positions[j] = buffer[j];
tempVertexData.positions[j + 1] = buffer[j + 1];
tempVertexData.positions[j + 2] = buffer[j + 2];
}
}
else {
tempVertexData.positions = new Float32Array(buffer.length);
tempVertexData.positions.set(buffer);
}
verticesCounts.push(tempVertexData.positions.length);
}
else if (semantic.indexOf("TEXCOORD_") !== -1) {
const channel = Number(semantic.split("_")[1]);
const uvKind = VertexBuffer.UVKind + (channel === 0 ? "" : channel + 1);
const uvs = new Float32Array(buffer.length);
uvs.set(buffer);
NormalizeUVs(uvs);
tempVertexData.set(uvs, uvKind);
}
else if (semantic === "JOINT") {
tempVertexData.matricesIndices = new Float32Array(buffer.length);
tempVertexData.matricesIndices.set(buffer);
}
else if (semantic === "WEIGHT") {
tempVertexData.matricesWeights = new Float32Array(buffer.length);
tempVertexData.matricesWeights.set(buffer);
}
else if (semantic === "COLOR") {
tempVertexData.colors = new Float32Array(buffer.length);
tempVertexData.colors.set(buffer);
}
}
// Indices
accessor = gltfRuntime.accessors[primitive.indices];
if (accessor) {
buffer = GLTFUtils.GetBufferFromAccessor(gltfRuntime, accessor);
tempVertexData.indices = new Int32Array(buffer.length);
tempVertexData.indices.set(buffer);
indexCounts.push(tempVertexData.indices.length);
}
else {
// Set indices on the fly
const indices = [];
for (let j = 0; j < tempVertexData.positions.length / 3; j++) {
indices.push(j);
}
tempVertexData.indices = new Int32Array(indices);
indexCounts.push(tempVertexData.indices.length);
}
if (!vertexData) {
vertexData = tempVertexData;
}
else {
vertexData.merge(tempVertexData);
}
// Sub material
const material = gltfRuntime.scene.getMaterialById(primitive.material);
subMaterials.push(material === null ? GLTFUtils.GetDefaultMaterial(gltfRuntime.scene) : material);
// Update vertices start and index start
verticesStarts.push(verticesStarts.length === 0 ? 0 : verticesStarts[verticesStarts.length - 1] + verticesCounts[verticesCounts.length - 2]);
indexStarts.push(indexStarts.length === 0 ? 0 : indexStarts[indexStarts.length - 1] + indexCounts[indexCounts.length - 2]);
}
}
let material;
gltfRuntime.scene._blockEntityCollection = !!gltfRuntime.assetContainer;
if (subMaterials.length > 1) {
material = new MultiMaterial("multimat" + id, gltfRuntime.scene);
material.subMaterials = subMaterials;
}
else {
material = new StandardMaterial("multimat" + id, gltfRuntime.scene);
}
if (subMaterials.length === 1) {
material = subMaterials[0];
}
material._parentContainer = gltfRuntime.assetContainer;
if (!newMesh.material) {
newMesh.material = material;
}
// Apply geometry
new Geometry(id, gltfRuntime.scene, vertexData, false, newMesh);
newMesh.computeWorldMatrix(true);
gltfRuntime.scene._blockEntityCollection = false;
// Apply submeshes
newMesh.subMeshes = [];
let index = 0;
for (let meshIndex = 0; meshIndex < meshes.length; meshIndex++) {
const meshId = meshes[meshIndex];
const mesh = gltfRuntime.meshes[meshId];
if (!mesh) {
continue;
}
for (let i = 0; i < mesh.primitives.length; i++) {
if (mesh.primitives[i].mode !== 4) {
//continue;
}
SubMesh.AddToMesh(index, verticesStarts[index], verticesCounts[index], indexStarts[index], indexCounts[index], newMesh, newMesh, true);
index++;
}
}
// Finish
return newMesh;
};
/**
* Configure node transformation from position, rotation and scaling
* @param newNode
* @param position
* @param rotation
* @param scaling
*/
const ConfigureNode = (newNode, position, rotation, scaling) => {
if (newNode.position) {
newNode.position = position;
}
if (newNode.rotationQuaternion || newNode.rotation) {
newNode.rotationQuaternion = rotation;
}
if (newNode.scaling) {
newNode.scaling = scaling;
}
};
/**
* Configures node from transformation matrix
* @param newNode
* @param node
*/
const ConfigureNodeFromMatrix = (newNode, node) => {
if (node.matrix) {
const position = new Vector3(0, 0, 0);
const rotation = new Quaternion();
const scaling = new Vector3(0, 0, 0);
const mat = Matrix.FromArray(node.matrix);
mat.decompose(scaling, rotation, position);
ConfigureNode(newNode, position, rotation, scaling);
}
else if (node.translation && node.rotation && node.scale) {
ConfigureNode(newNode, Vector3.FromArray(node.translation), Quaternion.FromArray(node.rotation), Vector3.FromArray(node.scale));
}
newNode.computeWorldMatrix(true);
};
/**
* Imports a node
* @param gltfRuntime
* @param node
* @param id
* @returns the newly imported node
*/
const ImportNode = (gltfRuntime, node, id) => {
let lastNode = null;
if (gltfRuntime.importOnlyMeshes && (node.skin || node.meshes)) {
if (gltfRuntime.importMeshesNames && gltfRuntime.importMeshesNames.length > 0 && gltfRuntime.importMeshesNames.indexOf(node.name || "") === -1) {
return null;
}
}
// Meshes
if (node.skin) {
if (node.meshes) {
const skin = gltfRuntime.skins[node.skin];
const newMesh = ImportMesh(gltfRuntime, node, node.meshes, id, node.babylonNode);
newMesh.skeleton = gltfRuntime.scene.getLastSkeletonById(node.skin);
if (newMesh.skeleton === null) {
newMesh.skeleton = ImportSkeleton(gltfRuntime, skin, newMesh, skin.babylonSkeleton);
if (!skin.babylonSkeleton) {
skin.babylonSkeleton = newMesh.skeleton;
}
}
lastNode = newMesh;
}
}
else if (node.meshes) {
/**
* Improve meshes property
*/
const newMesh = ImportMesh(gltfRuntime, node, node.mesh ? [node.mesh] : node.meshes, id, node.babylonNode);
lastNode = newMesh;
}
// Lights
else if (node.light && !node.babylonNode && !gltfRuntime.importOnlyMeshes) {
const light = gltfRuntime.lights[node.light];
if (light) {
if (light.type === "ambient") {
const ambienLight = light[light.type];
const hemiLight = new HemisphericLight(node.light, Vector3.Zero(), gltfRuntime.scene);
hemiLight.name = node.name || "";
if (ambienLight.color) {
hemiLight.diffuse = Color3.FromArray(ambienLight.color);
}
lastNode = hemiLight;
}
else if (light.type === "directional") {
const directionalLight = light[light.type];
const dirLight = new DirectionalLight(node.light, Vector3.Zero(), gltfRuntime.scene);
dirLight.name = node.name || "";
if (directionalLight.color) {
dirLight.diffuse = Color3.FromArray(directionalLight.color);
}
lastNode = dirLight;
}
else if (light.type === "point") {
const pointLight = light[light.type];
const ptLight = new PointLight(node.light, Vector3.Zero(), gltfRuntime.scene);
ptLight.name = node.name || "";
if (pointLight.color) {
ptLight.diffuse = Color3.FromArray(pointLight.color);
}
lastNode = ptLight;
}
else if (light.type === "spot") {
const spotLight = light[light.type];
const spLight = new SpotLight(node.light, Vector3.Zero(), Vector3.Zero(), 0, 0, gltfRuntime.scene);
spLight.name = node.name || "";
if (spotLight.color) {
spLight.diffuse = Color3.FromArray(spotLight.color);
}
if (spotLight.fallOfAngle) {
spLight.angle = spotLight.fallOfAngle;
}
if (spotLight.fallOffExponent) {
spLight.exponent = spotLight.fallOffExponent;
}
lastNode = spLight;
}
}
}
// Cameras
else if (node.camera && !node.babylonNode && !gltfRuntime.importOnlyMeshes) {
const camera = gltfRuntime.cameras[node.camera];
if (camera) {
gltfRuntime.scene._blockEntityCollection = !!gltfRuntime.assetContainer;
if (camera.type === "orthographic") {
const orthoCamera = new FreeCamera(node.camera, Vector3.Zero(), gltfRuntime.scene, false);
orthoCamera.name = node.name || "";
orthoCamera.mode = Camera.ORTHOGRAPHIC_CAMERA;
orthoCamera.attachControl();
lastNode = orthoCamera;
orthoCamera._parentContainer = gltfRuntime.assetContainer;
}
else if (camera.type === "perspective") {
const perspectiveCamera = camera[camera.type];
const persCamera = new FreeCamera(node.camera, Vector3.Zero(), gltfRuntime.scene, false);
persCamera.name = node.name || "";
persCamera.attachControl();
if (!perspectiveCamera.aspectRatio) {
perspectiveCamera.aspectRatio = gltfRuntime.scene.getEngine().getRenderWidth() / gltfRuntime.scene.getEngine().getRenderHeight();
}
if (perspectiveCamera.znear && perspectiveCamera.zfar) {
persCamera.maxZ = perspectiveCamera.zfar;
persCamera.minZ = perspectiveCamera.znear;
}
lastNode = persCamera;
persCamera._parentContainer = gltfRuntime.assetContainer;
}
gltfRuntime.scene._blockEntityCollection = false;
}
}
// Empty node
if (!node.jointName) {
if (node.babylonNode) {
return node.babylonNode;
}
else if (lastNode === null) {
gltfRuntime.scene._blockEntityCollection = !!gltfRuntime.assetContainer;
const dummy = new Mesh(node.name || "", gltfRuntime.scene);
dummy._parentContainer = gltfRuntime.assetContainer;
gltfRuntime.scene._blockEntityCollection = false;
node.babylonNode = dummy;
lastNode = dummy;
}
}
if (lastNode !== null) {
if (node.matrix && lastNode instanceof Mesh) {
ConfigureNodeFromMatrix(lastNode, node);
}
else {
const translation = node.translation || [0, 0, 0];
const rotation = node.rotation || [0, 0, 0, 1];
const scale = node.scale || [1, 1, 1];
ConfigureNode(lastNode, Vector3.FromArray(translation), Quaternion.FromArray(rotation), Vector3.FromArray(scale));
}
lastNode.updateCache(true);
node.babylonNode = lastNode;
}
return lastNode;
};
/**
* Traverses nodes and creates them
* @param gltfRuntime
* @param id
* @param parent
* @param meshIncluded
*/
const TraverseNodes = (gltfRuntime, id, parent, meshIncluded = false) => {
const node = gltfRuntime.nodes[id];
let newNode = null;
if (gltfRuntime.importOnlyMeshes && !meshIncluded && gltfRuntime.importMeshesNames) {
if (gltfRuntime.importMeshesNames.indexOf(node.name || "") !== -1 || gltfRuntime.importMeshesNames.length === 0) {
meshIncluded = true;
}
else {
meshIncluded = false;
}
}
else {
meshIncluded = true;
}
if (!node.jointName && meshIncluded) {
newNode = ImportNode(gltfRuntime, node, id);
if (newNode !== null) {
newNode.id = id;
newNode.parent = parent;
}
}
if (node.children) {
for (let i = 0; i < node.children.length; i++) {
TraverseNodes(gltfRuntime, node.children[i], newNode, meshIncluded);
}
}
};
/**
* do stuff after buffers, shaders are loaded (e.g. hook up materials, load animations, etc.)
* @param gltfRuntime
*/
const PostLoad = (gltfRuntime) => {
// Nodes
let currentScene = gltfRuntime.currentScene;
if (currentScene) {
for (let i = 0; i < currentScene.nodes.length; i++) {
TraverseNodes(gltfRuntime, currentScene.nodes[i], null);
}
}
else {
for (const thing in gltfRuntime.scenes) {
currentScene = gltfRuntime.scenes[thing];
for (let i = 0; i < currentScene.nodes.length; i++) {
TraverseNodes(gltfRuntime, currentScene.nodes[i], null);
}
}
}
// Set animations
LoadAnimations(gltfRuntime);
for (let i = 0; i < gltfRuntime.scene.skeletons.length; i++) {
const skeleton = gltfRuntime.scene.skeletons[i];
gltfRuntime.scene.beginAnimation(skeleton, 0, Number.MAX_VALUE, true, 1.0);
}
};
/**
* onBind shaderrs callback to set uniforms and matrices
* @param mesh
* @param gltfRuntime
* @param unTreatedUniforms
* @param shaderMaterial
* @param technique
* @param material
* @param onSuccess
*/
const OnBindShaderMaterial = (mesh, gltfRuntime, unTreatedUniforms, shaderMaterial, technique, material, onSuccess) => {
const materialValues = material.values || technique.parameters;
for (const unif in unTreatedUniforms) {
const uniform = unTreatedUniforms[unif];
const type = uniform.type;
if (type === EParameterType.FLOAT_MAT2 || type === EParameterType.FLOAT_MAT3 || type === EParameterType.FLOAT_MAT4) {
if (uniform.semantic && !uniform.source && !uniform.node) {
GLTFUtils.SetMatrix(gltfRuntime.scene, mesh, uniform, unif, shaderMaterial.getEffect());
}
else if (uniform.semantic && (uniform.source || uniform.node)) {
let source = gltfRuntime.scene.getNodeByName(uniform.source || uniform.node || "");
if (source === null) {
source = gltfRuntime.scene.getNodeById(uniform.source || uniform.node || "");
}
if (source === null) {
continue;
}
GLTFUtils.SetMatrix(gltfRuntime.scene, source, uniform, unif, shaderMaterial.getEffect());
}
}
else {
const value = materialValues[technique.uniforms[unif]];
if (!value) {
continue;
}
if (type === EParameterType.SAMPLER_2D) {
const texture = gltfRuntime.textures[material.values ? value : uniform.value].babylonTexture;
if (texture === null || texture === undefined) {
continue;
}
shaderMaterial.getEffect().setTexture(unif, texture);
}
else {
GLTFUtils.SetUniform(shaderMaterial.getEffect(), unif, value, type);
}
}
}
onSuccess(shaderMaterial);
};
/**
* Prepare uniforms to send the only one time
* Loads the appropriate textures
* @param gltfRuntime
* @param shaderMaterial
* @param technique
* @param material
*/
const PrepareShaderMaterialUniforms = (gltfRuntime, shaderMaterial, technique, material, unTreatedUniforms) => {
const materialValues = material.values || technique.parameters;
const techniqueUniforms = technique.uniforms;
/**
* Prepare values here (not matrices)
*/
for (const unif in unTreatedUniforms) {
const uniform = unTreatedUniforms[unif];
const type = uniform.type;
let value = materialValues[techniqueUniforms[unif]];
if (value === undefined) {
// In case the value is the same for all materials
value = uniform.value;
}
if (!value) {
continue;
}
const onLoadTexture = (uniformName) => {
return (texture) => {
if (uniform.value && uniformName) {
// Static uniform
shaderMaterial.setTexture(uniformName, texture);
delete unTreatedUniforms[uniformName];
}
};
};
// Texture (sampler2D)
if (type === EParameterType.SAMPLER_2D) {
GLTFLoaderExtension.LoadTextureAsync(gltfRuntime, material.values ? value : uniform.value, onLoadTexture(unif), () => onLoadTexture(null));
}
// Others
else {
if (uniform.value && GLTFUtils.SetUniform(shaderMaterial, unif, material.values ? value : uniform.value, type)) {
// Static uniform
delete unTreatedUniforms[unif];
}
}
}
};
/**
* Shader compilation failed
* @param program
* @param shaderMaterial
* @param onError
* @returns callback when shader is compiled
*/
const OnShaderCompileError = (program, shaderMaterial, onError) => {
return (effect, error) => {
shaderMaterial.dispose(true);
onError("Cannot compile program named " + program.name + ". Error: " + error + ". Default material will be applied");
};
};
/**
* Shader compilation success
* @param gltfRuntime
* @param shaderMaterial
* @param technique
* @param material
* @param unTreatedUniforms
* @param onSuccess
* @returns callback when shader is compiled
*/
const OnShaderCompileSuccess = (gltfRuntime, shaderMaterial, technique, material, unTreatedUniforms, onSuccess) => {
return (_) => {
PrepareShaderMaterialUniforms(gltfRuntime, shaderMaterial, technique, material, unTreatedUniforms);
shaderMaterial.onBind = (mesh) => {
OnBindShaderMaterial(mesh, gltfRuntime, unTreatedUniforms, shaderMaterial, technique, material, onSuccess);
};
};
};
/**
* Returns the appropriate uniform if already handled by babylon
* @param tokenizer
* @param technique
* @param unTreatedUniforms
* @returns the name of the uniform handled by babylon
*/
const ParseShaderUniforms = (tokenizer, technique, unTreatedUniforms) => {
for (const unif in technique.uniforms) {
const uniform = technique.uniforms[unif];
const uniformParameter = technique.parameters[uniform];
if (tokenizer.currentIdentifier === unif) {
if (uniformParameter.semantic && !uniformParameter.source && !uniformParameter.node) {
const transformIndex = glTFTransforms.indexOf(uniformParameter.semantic);
if (transformIndex !== -1) {
delete unTreatedUniforms[unif];
return BabylonTransforms[transformIndex];
}
}
}
}
return tokenizer.currentIdentifier;
};
/**
* All shaders loaded. Create materials one by one
* @param gltfRuntime
*/
const ImportMaterials = (gltfRuntime) => {
// Create materials
for (const mat in gltfRuntime.materials) {
GLTFLoaderExtension.LoadMaterialAsync(gltfRuntime, mat, () => { }, () => { });
}
};
/**
* Implementation of the base glTF spec
* @internal
*/
export class GLTFLoaderBase {
static CreateRuntime(parsedData, scene, rootUrl) {
const gltfRuntime = {
extensions: {},
accessors: {},
buffers: {},
bufferViews: {},
meshes: {},
lights: {},
cameras: {},
nodes: {},
images: {},
textures: {},
shaders: {},
programs: {},
samplers: {},
techniques: {},
materials: {},
animations: {},
skins: {},
extensionsUsed: [],
scenes: {},
buffersCount: 0,
shaderscount: 0,
scene: scene,
rootUrl: rootUrl,
loadedBufferCount: 0,
loadedBufferViews: {},
loadedShaderCount: 0,
importOnlyMeshes: false,
dummyNodes: [],
assetContainer: null,
};
// Parse
if (parsedData.extensions) {
ParseObject(parsedData.extensions, "extensions", gltfRuntime);
}
if (parsedData.extensionsUsed) {
ParseObject(parsedData.extensionsUsed, "extensionsUsed", gltfRuntime);
}
if (parsedData.buffers) {
ParseBuffers(parsedData.buffers, gltfRuntime);
}
if (parsedData.bufferViews) {
ParseObject(parsedData.bufferViews, "bufferViews", gltfRuntime);
}
if (parsedData.accessors) {
ParseObject(parsedData.accessors, "accessors", gltfRuntime);
}
if (parsedData.meshes) {
ParseObject(parsedData.meshes, "meshes", gltfRuntime);
}
if (parsedData.lights) {
ParseObject(parsedData.lights, "lights", gltfRuntime);
}
if (parsedData.cameras) {
ParseObject(parsedData.cameras, "cameras", gltfRuntime);
}
if (parsedData.nodes) {
ParseObject(parsedData.nodes, "nodes", gltfRuntime);
}
if (parsedData.images) {
ParseObject(parsedData.images, "images", gltfRuntime);
}
if (parsedData.textures) {
ParseObject(parsedData.textures, "textures", gltfRuntime);
}
if (parsedData.shaders) {
ParseShaders(parsedData.shaders, gltfRuntime);
}
if (parsedData.programs) {
ParseObject(parsedData.programs, "programs", gltfRuntime);
}
if (parsedData.samplers) {
ParseObject(parsedData.samplers, "samplers", gltfRuntime);
}
if (parsedData.techniques) {
ParseObject(parsedData.techniques, "techniques", gltfRuntime);
}
if (parsedData.materials) {
ParseObject(parsedData.materials, "materials", gltfRuntime);
}
if (parsedData.animations) {
ParseObject(parsedData.animations, "animations", gltfRuntime);
}
if (parsedData.skins) {
ParseObject(parsedData.skins, "skins", gltfRuntime);
}
if (parsedData.scenes) {
gltfRuntime.scenes = parsedData.scenes;
}
if (parsedData.scene && parsedData.scenes) {
gltfRuntime.currentScene = parsedData.scenes[parsedData.scene];
}
return gltfRuntime;
}
// eslint-disable-next-line no-restricted-syntax
static LoadBufferAsync(gltfRuntime, id, onSuccess, onError, onProgress) {
const buffer = gltfRuntime.buffers[id];
if (Tools.IsBase64(buffer.uri)) {
setTimeout(() => onSuccess(new Uint8Array(Tools.DecodeBase64(buffer.uri))));
}
else {
Tools.LoadFile(gltfRuntime.rootUrl + buffer.uri, (data) => onSuccess(new Uint8Array(data)), onProgress, undefined, true, (request) => {
if (request) {
onError(request.status + " " + request.statusText);
}
});
}
}
// eslint-disable-next-line no-restricted-syntax
static LoadTextureBufferAsync(gltfRuntime, id, onSuccess, onError) {
const texture = gltfRuntime.textures[id];
if (!texture || !texture.source) {
onError("");
return;
}
if (texture.babylonTexture) {
onSuccess(null);
return;
}
const source = gltfRuntime.images[texture.source];
if (Tools.IsBase64(source.uri)) {
setTimeout(() => onSuccess(new Uint8Array(Tools.DecodeBase64(source.uri))));
}
else {
Tools.LoadFile(gltfRuntime.rootUrl + source.uri, (data) => onSuccess(new Uint8Array(data)), undefined, undefined, true, (request) => {
if (request) {
onError(request.status + " " + request.statusText);
}
});
}
}
// eslint-disable-next-line no-restricted-syntax
static CreateTextureAsync(gltfRuntime, id, buffer, onSuccess) {
const texture = gltfRuntime.textures[id];
if (texture.babylonTexture) {
onSuccess(texture.babylonTexture);
return;
}
const sampler = gltfRuntime.samplers[texture.sampler];
const createMipMaps = sampler.minFilter === ETextureFilterType.NEAREST_MIPMAP_NEAREST ||
sampler.minFilter === ETextureFilterType.NEAREST_MIPMAP_LINEAR ||
sampler.minFilter === ETextureFilterType.LINEAR_MIPMAP_NEAREST ||
sampler.minFilter === ETextureFilterType.LINEAR_MIPMAP_LINEAR;
const samplingMode = Texture.BILINEAR_SAMPLINGMODE;
const blob = buffer == null ? new Blob() : new Blob([buffer]);
const blobURL = URL.createObjectURL(blob);
const revokeBlobURL = () => URL.revokeObjectURL(blobURL);
const newTexture = new Texture(blobURL, gltfRuntime.scene, !createMipMaps, true, samplingMode, revokeBlobURL, revokeBlobURL);
if (sampler.wrapS !== undefined) {
newTexture.wrapU = GLTFUtils.GetWrapMode(sampler.wrapS);
}
if (sampler.wrapT !== undefined) {
newTexture.wrapV = GLTFUtils.GetWrapMode(sampler.wrapT);
}
newTexture.name = id;
texture.babylonTexture = newTexture;
onSuccess(newTexture);
}
// eslint-disable-next-line no-restricted-syntax
static LoadShaderStringAsync(gltfRuntime, id, onSuccess, onError) {
const shader = gltfRuntime.shaders[id];
if (Tools.IsBase64(shader.uri)) {
const shaderString = atob(shader.uri.split(",")[1]);
if (onSuccess) {
onSuccess(shaderString);
}
}
else {
Tools.LoadFile(gltfRuntime.rootUrl + shader.uri, onSuccess, undefined, undefined, false, (request) => {
if (request && onError) {
onError(request.status + " " + request.statusText);
}
});
}
}
// eslint-disable-next-line no-restricted-syntax
static LoadMaterialAsync(gltfRuntime, id, onSuccess, onError) {
const material = gltfRuntime.materials[id];
if (!material.technique) {
if (onError) {
onError("No technique found.");
}
return;
}
const technique = gltfRuntime.techniques[material.technique];
if (!technique) {
gltfRuntime.scene._blockEntityCollection = !!gltfRuntime.assetContainer;
const defaultMaterial = new StandardMaterial(id, gltfRuntime.scene);
defaultMaterial._parentContainer = gltfRuntime.assetContainer;
gltfRuntime.scene._blockEntityCollection = false;
defaultMaterial.diffuseColor = new Color3(0.5, 0.5, 0.5);
defaultMaterial.sideOrientation = Material.CounterClockWiseSideOrientation;
onSuccess(defaultMaterial);
return;
}
const program = gltfRuntime.programs[technique.program];
const states = technique.states;
const vertexShader = Effect.ShadersStore[program.vertexShader + "VertexShader"];
const pixelShader = Effect.ShadersStore[program.fragmentShader + "PixelShader"];
let newVertexShader = "";