UNPKG

@azure/msal-node

Version:
129 lines (126 loc) 8.23 kB
/*! @azure/msal-node v5.0.3 2026-01-28 */ 'use strict'; import { BaseManagedIdentitySource, ManagedIdentityUserAssignedIdQueryParameterNames } from './BaseManagedIdentitySource.mjs'; import { ManagedIdentityEnvironmentVariableNames, ManagedIdentitySourceNames, ManagedIdentityHeaders, ManagedIdentityQueryParameters, ManagedIdentityIdType, HttpMethod } from '../../utils/Constants.mjs'; import { ManagedIdentityRequestParameters } from '../../config/ManagedIdentityRequestParameters.mjs'; /* * Copyright (c) Microsoft Corporation. All rights reserved. * Licensed under the MIT License. */ const MACHINE_LEARNING_MSI_API_VERSION = "2017-09-01"; const MANAGED_IDENTITY_MACHINE_LEARNING_UNSUPPORTED_ID_TYPE_ERROR = `Only client id is supported for user-assigned managed identity in ${ManagedIdentitySourceNames.MACHINE_LEARNING}.`; // referenced in unit test /** * Machine Learning Managed Identity Source implementation for Azure Machine Learning environments. * * This class handles managed identity authentication specifically for Azure Machine Learning services. * It supports both system-assigned and user-assigned managed identities, using the MSI_ENDPOINT * and MSI_SECRET environment variables that are automatically provided in Azure ML environments. */ class MachineLearning extends BaseManagedIdentitySource { /** * Creates a new MachineLearning managed identity source instance. * * @param logger - Logger instance for diagnostic information * @param nodeStorage - Node storage implementation for caching * @param networkClient - Network client for making HTTP requests * @param cryptoProvider - Cryptographic operations provider * @param disableInternalRetries - Whether to disable automatic request retries * @param msiEndpoint - The MSI endpoint URL from environment variables * @param secret - The MSI secret from environment variables */ constructor(logger, nodeStorage, networkClient, cryptoProvider, disableInternalRetries, msiEndpoint, secret) { super(logger, nodeStorage, networkClient, cryptoProvider, disableInternalRetries); this.msiEndpoint = msiEndpoint; this.secret = secret; } /** * Retrieves the required environment variables for Azure Machine Learning managed identity. * * This method checks for the presence of MSI_ENDPOINT and MSI_SECRET environment variables * that are automatically set by the Azure Machine Learning platform when managed identity * is enabled for the compute instance or cluster. * * @returns An array containing [msiEndpoint, secret] where either value may be undefined * if the corresponding environment variable is not set */ static getEnvironmentVariables() { const msiEndpoint = process.env[ManagedIdentityEnvironmentVariableNames.MSI_ENDPOINT]; const secret = process.env[ManagedIdentityEnvironmentVariableNames.MSI_SECRET]; return [msiEndpoint, secret]; } /** * Attempts to create a MachineLearning managed identity source. * * This method validates the Azure Machine Learning environment by checking for the required * MSI_ENDPOINT and MSI_SECRET environment variables. If both are present and valid, * it creates and returns a MachineLearning instance. If either is missing or invalid, * it returns null, indicating that this managed identity source is not available * in the current environment. * * @param logger - Logger instance for diagnostic information * @param nodeStorage - Node storage implementation for caching * @param networkClient - Network client for making HTTP requests * @param cryptoProvider - Cryptographic operations provider * @param disableInternalRetries - Whether to disable automatic request retries * * @returns A new MachineLearning instance if the environment is valid, null otherwise */ static tryCreate(logger, nodeStorage, networkClient, cryptoProvider, disableInternalRetries) { const [msiEndpoint, secret] = MachineLearning.getEnvironmentVariables(); // if either of the MSI endpoint or MSI secret variables are undefined, this MSI provider is unavailable. if (!msiEndpoint || !secret) { logger.info(`[Managed Identity] ${ManagedIdentitySourceNames.MACHINE_LEARNING} managed identity is unavailable because one or both of the '${ManagedIdentityEnvironmentVariableNames.MSI_ENDPOINT}' and '${ManagedIdentityEnvironmentVariableNames.MSI_SECRET}' environment variables are not defined.`, ""); return null; } const validatedMsiEndpoint = MachineLearning.getValidatedEnvVariableUrlString(ManagedIdentityEnvironmentVariableNames.MSI_ENDPOINT, msiEndpoint, ManagedIdentitySourceNames.MACHINE_LEARNING, logger); logger.info(`[Managed Identity] Environment variables validation passed for ${ManagedIdentitySourceNames.MACHINE_LEARNING} managed identity. Endpoint URI: ${validatedMsiEndpoint}. Creating ${ManagedIdentitySourceNames.MACHINE_LEARNING} managed identity.`, ""); return new MachineLearning(logger, nodeStorage, networkClient, cryptoProvider, disableInternalRetries, msiEndpoint, secret); } /** * Creates a managed identity token request for Azure Machine Learning environments. * * This method constructs the HTTP request parameters needed to acquire an access token * from the Azure Machine Learning managed identity endpoint. It handles both system-assigned * and user-assigned managed identities with specific logic for each type: * * - System-assigned: Uses the DEFAULT_IDENTITY_CLIENT_ID environment variable * - User-assigned: Only supports client ID-based identification (not object ID or resource ID) * * The request uses the 2017-09-01 API version and includes the required secret header * for authentication with the MSI endpoint. * * @param resource - The target resource/scope for which to request an access token (e.g., "https://graph.microsoft.com/.default") * @param managedIdentityId - The managed identity configuration specifying whether to use system-assigned or user-assigned identity * * @returns A configured ManagedIdentityRequestParameters object ready for network execution * * @throws Error if an unsupported managed identity ID type is specified (only client ID is supported for user-assigned) */ createRequest(resource, managedIdentityId) { const request = new ManagedIdentityRequestParameters(HttpMethod.GET, this.msiEndpoint); request.headers[ManagedIdentityHeaders.METADATA_HEADER_NAME] = "true"; request.headers[ManagedIdentityHeaders.ML_AND_SF_SECRET_HEADER_NAME] = this.secret; request.queryParameters[ManagedIdentityQueryParameters.API_VERSION] = MACHINE_LEARNING_MSI_API_VERSION; request.queryParameters[ManagedIdentityQueryParameters.RESOURCE] = resource; if (managedIdentityId.idType === ManagedIdentityIdType.SYSTEM_ASSIGNED) { request.queryParameters[ManagedIdentityUserAssignedIdQueryParameterNames.MANAGED_IDENTITY_CLIENT_ID_2017] = process.env[ManagedIdentityEnvironmentVariableNames .DEFAULT_IDENTITY_CLIENT_ID]; // this environment variable is always set in an Azure Machine Learning source } else if (managedIdentityId.idType === ManagedIdentityIdType.USER_ASSIGNED_CLIENT_ID) { request.queryParameters[this.getManagedIdentityUserAssignedIdQueryParameterKey(managedIdentityId.idType, false, // isIMDS true // uses2017API )] = managedIdentityId.id; } else { throw new Error(MANAGED_IDENTITY_MACHINE_LEARNING_UNSUPPORTED_ID_TYPE_ERROR); } // bodyParameters calculated in BaseManagedIdentity.acquireTokenWithManagedIdentity return request; } } export { MANAGED_IDENTITY_MACHINE_LEARNING_UNSUPPORTED_ID_TYPE_ERROR, MachineLearning }; //# sourceMappingURL=MachineLearning.mjs.map