UNPKG

@aws-amplify/auth

Version:
886 lines (801 loc) • 20.3 kB
/* eslint-disable */ // @ts-nocheck -> BigInteger is already a vended utility // A small implementation of BigInteger based on http://www-cs-students.stanford.edu/~tjw/jsbn/ // // All public methods have been removed except the following: // new BigInteger(a, b) (only radix 2, 4, 8, 16 and 32 supported) // toString (only radix 2, 4, 8, 16 and 32 supported) // negate // abs // compareTo // bitLength // mod // equals // add // subtract // multiply // divide // modPow import { AuthBigInteger } from './types'; export default BigInteger as AuthBigInteger; interface BNP { s: number; t: number; } /* * Copyright (c) 2003-2005 Tom Wu * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * In addition, the following condition applies: * * All redistributions must retain an intact copy of this copyright notice * and disclaimer. */ // (public) Constructor function BigInteger(a?: any, b?: any) { if (a != null) this.fromString(a, b); } // return new, unset BigInteger function nbi() { return new BigInteger(null, null); } // Bits per digit let dbits: number; // JavaScript engine analysis const canary = 0xdeadbeefcafe; const j_lm = (canary & 0xffffff) === 0xefcafe; // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1( i: number, x: number, w: number, j: number, c: number, n: number, ): number { while (--n >= 0) { const v = x * this[i++] + w[j] + c; c = Math.floor(v / 0x4000000); w[j++] = v & 0x3ffffff; } return c; } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2( i: number, x: number, w: number, j: number, c: number, n: number, ): number { const xl = x & 0x7fff; const xh = x >> 15; while (--n >= 0) { let l = this[i] & 0x7fff; const h = this[i++] >> 15; const m = xh * l + h * xl; l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff); c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30); w[j++] = l & 0x3fffffff; } return c; } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3( i: number, x: number, w: number, j: number, c: number, n: number, ): number { const xl = x & 0x3fff; const xh = x >> 14; while (--n >= 0) { let l = this[i] & 0x3fff; const h = this[i++] >> 14; const m = xh * l + h * xl; l = xl * l + ((m & 0x3fff) << 14) + w[j] + c; c = (l >> 28) + (m >> 14) + xh * h; w[j++] = l & 0xfffffff; } return c; } const inBrowser = typeof navigator !== 'undefined'; if (inBrowser && j_lm && navigator.appName === 'Microsoft Internet Explorer') { BigInteger.prototype.am = am2; dbits = 30; } else if (inBrowser && j_lm && navigator.appName !== 'Netscape') { BigInteger.prototype.am = am1; dbits = 26; } else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28; } BigInteger.prototype.DB = dbits; BigInteger.prototype.DM = (1 << dbits) - 1; BigInteger.prototype.DV = 1 << dbits; const BI_FP = 52; BigInteger.prototype.FV = Math.pow(2, BI_FP); BigInteger.prototype.F1 = BI_FP - dbits; BigInteger.prototype.F2 = 2 * dbits - BI_FP; // Digit conversions const BI_RM = '0123456789abcdefghijklmnopqrstuvwxyz'; const BI_RC = []; let rr: number, vv: number; rr = '0'.charCodeAt(0); for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; rr = 'a'.charCodeAt(0); for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; rr = 'A'.charCodeAt(0); for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; function int2char(n: number): string { return BI_RM.charAt(n); } function intAt(s: string, i: number): number { const c = BI_RC[s.charCodeAt(i)]; return c == null ? -1 : c; } // (protected) copy this to r function bnpCopyTo(r: { t: number; s: number }): void { for (let i = this.t - 1; i >= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s; } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x: number): void { this.t = 1; this.s = x < 0 ? -1 : 0; if (x > 0) this[0] = x; else if (x < -1) this[0] = x + this.DV; else this.t = 0; } // return bigint initialized to value function nbv(i: number) { const r = nbi(); r.fromInt(i); return r; } // (protected) set from string and radix function bnpFromString(s: string, b: number): void { let k: number; if (b === 16) k = 4; else if (b === 8) k = 3; else if (b === 2) k = 1; else if (b === 32) k = 5; else if (b === 4) k = 2; else throw new Error('Only radix 2, 4, 8, 16, 32 are supported'); this.t = 0; this.s = 0; let i = s.length; let mi = false; let sh = 0; while (--i >= 0) { const x = intAt(s, i); if (x < 0) { if (s.charAt(i) === '-') mi = true; continue; } mi = false; if (sh === 0) this[this.t++] = x; else if (sh + k > this.DB) { this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh; this[this.t++] = x >> (this.DB - sh); } else this[this.t - 1] |= x << sh; sh += k; if (sh >= this.DB) sh -= this.DB; } this.clamp(); if (mi) BigInteger.ZERO.subTo(this, this); } // (protected) clamp off excess high words function bnpClamp(): void { const c = this.s & this.DM; while (this.t > 0 && this[this.t - 1] == c) --this.t; } // (public) return string representation in given radix function bnToString(b: number): string { if (this.s < 0) return '-' + this.negate().toString(b); let k: number; if (b == 16) k = 4; else if (b === 8) k = 3; else if (b === 2) k = 1; else if (b === 32) k = 5; else if (b === 4) k = 2; else throw new Error('Only radix 2, 4, 8, 16, 32 are supported'); const km = (1 << k) - 1; let d: number; let m = false; let r = ''; let i = this.t; let p = this.DB - ((i * this.DB) % k); if (i-- > 0) { if (p < this.DB && (d = this[i] >> p) > 0) { m = true; r = int2char(d); } while (i >= 0) { if (p < k) { d = (this[i] & ((1 << p) - 1)) << (k - p); d |= this[--i] >> (p += this.DB - k); } else { d = (this[i] >> (p -= k)) & km; if (p <= 0) { p += this.DB; --i; } } if (d > 0) m = true; if (m) r += int2char(d); } } return m ? r : '0'; } // (public) -this function bnNegate() { const r = nbi(); BigInteger.ZERO.subTo(this, r); return r; } // (public) |this| function bnAbs() { return this.s < 0 ? this.negate() : this; } // (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a: BNP): number { let r = this.s - a.s; if (r != 0) return r; let i = this.t; r = i - a.t; if (r != 0) return this.s < 0 ? -r : r; while (--i >= 0) if ((r = this[i] - a[i]) != 0) return r; return 0; } // returns bit length of the integer x function nbits(x: number): number { let r = 1; let t: number; if ((t = x >>> 16) !== 0) { x = t; r += 16; } if ((t = x >> 8) !== 0) { x = t; r += 8; } if ((t = x >> 4) !== 0) { x = t; r += 4; } if ((t = x >> 2) !== 0) { x = t; r += 2; } if ((t = x >> 1) !== 0) { x = t; r += 1; } return r; } // (public) return the number of bits in "this" function bnBitLength(): number { if (this.t <= 0) return 0; return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM)); } // (protected) r = this << n*DB function bnpDLShiftTo(n: number, r: BNP) { let i: number; for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i]; for (i = n - 1; i >= 0; --i) r[i] = 0; r.t = this.t + n; r.s = this.s; } // (protected) r = this >> n*DB function bnpDRShiftTo(n: number, r: BNP): void { for (let i = n; i < this.t; ++i) r[i - n] = this[i]; r.t = Math.max(this.t - n, 0); r.s = this.s; } // (protected) r = this << n function bnpLShiftTo( n: number, r: { s: number; t: number; clamp: Function }, ): void { const bs = n % this.DB; const cbs = this.DB - bs; const bm = (1 << cbs) - 1; const ds = Math.floor(n / this.DB); let c = (this.s << bs) & this.DM; let i; for (i = this.t - 1; i >= 0; --i) { r[i + ds + 1] = (this[i] >> cbs) | c; c = (this[i] & bm) << bs; } for (i = ds - 1; i >= 0; --i) r[i] = 0; r[ds] = c; r.t = this.t + ds + 1; r.s = this.s; r.clamp(); } // (protected) r = this >> n function bnpRShiftTo(n: number, r: BNP & { clamp: Function }): void { r.s = this.s; const ds = Math.floor(n / this.DB); if (ds >= this.t) { r.t = 0; return; } const bs = n % this.DB; const cbs = this.DB - bs; const bm = (1 << bs) - 1; r[0] = this[ds] >> bs; for (let i = ds + 1; i < this.t; ++i) { r[i - ds - 1] |= (this[i] & bm) << cbs; r[i - ds] = this[i] >> bs; } if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs; r.t = this.t - ds; r.clamp(); } // (protected) r = this - a function bnpSubTo(a: BNP, r: BNP & { clamp: Function }): void { let i = 0; let c = 0; const m = Math.min(a.t, this.t); while (i < m) { c += this[i] - a[i]; r[i++] = c & this.DM; c >>= this.DB; } if (a.t < this.t) { c -= a.s; while (i < this.t) { c += this[i]; r[i++] = c & this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while (i < a.t) { c -= a[i]; r[i++] = c & this.DM; c >>= this.DB; } c -= a.s; } r.s = c < 0 ? -1 : 0; if (c < -1) r[i++] = this.DV + c; else if (c > 0) r[i++] = c; r.t = i; r.clamp(); } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo( a: BNP & { abs: Function }, r: BNP & { clamp: Function }, ): void { const x = this.abs(); const y = a.abs(); let i = x.t; r.t = i + y.t; while (--i >= 0) r[i] = 0; for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t); r.s = 0; r.clamp(); if (this.s !== a.s) BigInteger.ZERO.subTo(r, r); } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { const x = this.abs(); let i = (r.t = 2 * x.t); while (--i >= 0) r[i] = 0; for (i = 0; i < x.t - 1; ++i) { const c = x.am(i, x[i], r, 2 * i, 0, 1); if ( (r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV ) { r[i + x.t] -= x.DV; r[i + x.t + 1] = 1; } } if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1); r.s = 0; r.clamp(); } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo( m: BNP & { abs: Function }, q: { fromInt: Function }, r: BNP & { compareTo: Function; subTo: Function; drShiftTo: Function; clamp: Function; rShiftTo: Function; }, ): void { const pm = m.abs(); if (pm.t <= 0) return; const pt = this.abs(); if (pt.t < pm.t) { if (q != null) q.fromInt(0); if (r != null) this.copyTo(r); return; } if (r === null) r = nbi(); const y = nbi(); const ts = this.s; const ms = m.s; const nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus if (nsh > 0) { pm.lShiftTo(nsh, y); pt.lShiftTo(nsh, r); } else { pm.copyTo(y); pt.copyTo(r); } const ys = y.t; const y0 = y[ys - 1]; if (y0 === 0) return; const yt = y0 * (1 << this.F1) + (ys > 1 ? y[ys - 2] >> this.F2 : 0); const d1 = this.FV / yt; const d2 = (1 << this.F1) / yt; const e = 1 << this.F2; let i = r.t; let j = i - ys; const t = q === null ? nbi() : q; y.dlShiftTo(j, t); if (r.compareTo(t) >= 0) { r[r.t++] = 1; r.subTo(t, r); } BigInteger.ONE.dlShiftTo(ys, t); t.subTo(y, y); // "negative" y so we can replace sub with am later while (y.t < ys) y[y.t++] = 0; while (--j >= 0) { // Estimate quotient digit let qd = r[--i] === y0 ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2); if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out y.dlShiftTo(j, t); r.subTo(t, r); while (r[i] < --qd) r.subTo(t, r); } } if (q !== null) { r.drShiftTo(ys, q); if (ts !== ms) BigInteger.ZERO.subTo(q, q); } r.t = ys; r.clamp(); if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder if (ts < 0) BigInteger.ZERO.subTo(r, r); } // (public) this mod a function bnMod(a) { const r = nbi(); this.abs().divRemTo(a, null, r); if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r); return r; } // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit(): number { if (this.t < 1) return 0; const x = this[0]; if ((x & 1) === 0) return 0; let y = x & 3; // y == 1/x mod 2^2 y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4 y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8 y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y * (2 - ((x * y) % this.DV))) % this.DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return y > 0 ? this.DV - y : -y; } function bnEquals(a: number): boolean { return this.compareTo(a) === 0; } // (protected) r = this + a function bnpAddTo(a: BNP, r: BNP & { clamp: Function }): void { let i = 0; let c = 0; const m = Math.min(a.t, this.t); while (i < m) { c += this[i] + a[i]; r[i++] = c & this.DM; c >>= this.DB; } if (a.t < this.t) { c += a.s; while (i < this.t) { c += this[i]; r[i++] = c & this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while (i < a.t) { c += a[i]; r[i++] = c & this.DM; c >>= this.DB; } c += a.s; } r.s = c < 0 ? -1 : 0; if (c > 0) r[i++] = c; else if (c < -1) r[i++] = this.DV + c; r.t = i; r.clamp(); } // (public) this + a function bnAdd(a: number) { const r = nbi(); this.addTo(a, r); return r; } // (public) this - a function bnSubtract(a: number): number { const r = nbi(); this.subTo(a, r); return r; } // (public) this * a function bnMultiply(a: number): number { const r = nbi(); this.multiplyTo(a, r); return r; } // (public) this / a function bnDivide(a: number): number { const r = nbi(); this.divRemTo(a, r, null); return r; } // Montgomery reduction function Montgomery(m: { invDigit: Function; DB: number; t: number }): void { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp & 0x7fff; this.mph = this.mp >> 15; this.um = (1 << (m.DB - 15)) - 1; this.mt2 = 2 * m.t; } // xR mod m function montConvert(x: BNP & { abs: Function }): number { const r = nbi(); x.abs().dlShiftTo(this.m.t, r); r.divRemTo(this.m, null, r); if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r); return r; } // x/R mod m function montRevert(x: { copyTo: Function }): number { const r = nbi(); x.copyTo(r); this.reduce(r); return r; } // x = x/R mod m (HAC 14.32) function montReduce(x: { t: number; clamp: Function; drShiftTo: Function; compareTo: Function; subTo: Function; DV: number; DM: number; }): void { while (x.t <= this.mt2) // pad x so am has enough room later x[x.t++] = 0; for (let i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV let j = x[i] & 0x7fff; const u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM; // use am to combine the multiply-shift-add into one call j = i + this.m.t; x[j] += this.m.am(0, u0, x, i, 0, this.m.t); // propagate carry while (x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } } x.clamp(); x.drShiftTo(this.m.t, x); if (x.compareTo(this.m) >= 0) x.subTo(this.m, x); } // r = "x^2/R mod m"; x != r function montSqrTo(x: { squareTo: Function }, r: number) { x.squareTo(r); this.reduce(r); } // r = "xy/R mod m"; x,y != r function montMulTo(x: { multiplyTo: Function }, y: number, r: number) { x.multiplyTo(y, r); this.reduce(r); } Montgomery.prototype.convert = montConvert; Montgomery.prototype.revert = montRevert; Montgomery.prototype.reduce = montReduce; Montgomery.prototype.mulTo = montMulTo; Montgomery.prototype.sqrTo = montSqrTo; // (public) this^e % m (HAC 14.85) function bnModPow( e: { bitLength: Function; t: number }, m: { invDigit: Function; DB: number; t: number; }, callback: Function, ) { let i = e.bitLength(); let k: number; let r = nbv(1); const z = new Montgomery(m); if (i <= 0) return r; else if (i < 18) k = 1; else if (i < 48) k = 3; else if (i < 144) k = 4; else if (i < 768) k = 5; else k = 6; // precomputation const g = []; let n = 3; const k1 = k - 1; const km = (1 << k) - 1; g[1] = z.convert(this); if (k > 1) { const g2 = nbi(); z.sqrTo(g[1], g2); while (n <= km) { g[n] = nbi(); z.mulTo(g2, g[n - 2], g[n]); n += 2; } } let j = e.t - 1; let w: number; let is1 = true; let r2 = nbi(); let t: number; i = nbits(e[j]) - 1; while (j >= 0) { if (i >= k1) w = (e[j] >> (i - k1)) & km; else { w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i); if (j > 0) w |= e[j - 1] >> (this.DB + i - k1); } n = k; while ((w & 1) === 0) { w >>= 1; --n; } if ((i -= n) < 0) { i += this.DB; --j; } if (is1) { // ret == 1, don't bother squaring or multiplying it g[w].copyTo(r); is1 = false; } else { while (n > 1) { z.sqrTo(r, r2); z.sqrTo(r2, r); n -= 2; } if (n > 0) z.sqrTo(r, r2); else { t = r; r = r2; r2 = t; } z.mulTo(r2, g[w], r); } while (j >= 0 && (e[j] & (1 << i)) === 0) { z.sqrTo(r, r2); t = r; r = r2; r2 = t; if (--i < 0) { i = this.DB - 1; --j; } } } const result = z.revert(r); callback(null, result); return result; } // protected BigInteger.prototype.copyTo = bnpCopyTo; BigInteger.prototype.fromInt = bnpFromInt; BigInteger.prototype.fromString = bnpFromString; BigInteger.prototype.clamp = bnpClamp; BigInteger.prototype.dlShiftTo = bnpDLShiftTo; BigInteger.prototype.drShiftTo = bnpDRShiftTo; BigInteger.prototype.lShiftTo = bnpLShiftTo; BigInteger.prototype.rShiftTo = bnpRShiftTo; BigInteger.prototype.subTo = bnpSubTo; BigInteger.prototype.multiplyTo = bnpMultiplyTo; BigInteger.prototype.squareTo = bnpSquareTo; BigInteger.prototype.divRemTo = bnpDivRemTo; BigInteger.prototype.invDigit = bnpInvDigit; BigInteger.prototype.addTo = bnpAddTo; // public BigInteger.prototype.toString = bnToString; BigInteger.prototype.negate = bnNegate; BigInteger.prototype.abs = bnAbs; BigInteger.prototype.compareTo = bnCompareTo; BigInteger.prototype.bitLength = bnBitLength; BigInteger.prototype.mod = bnMod; BigInteger.prototype.equals = bnEquals; BigInteger.prototype.add = bnAdd; BigInteger.prototype.subtract = bnSubtract; BigInteger.prototype.multiply = bnMultiply; BigInteger.prototype.divide = bnDivide; BigInteger.prototype.modPow = bnModPow; // "constants" BigInteger.ZERO = nbv(0); BigInteger.ONE = nbv(1);