@astermind/astermind-pro
Version:
Astermind Pro - Premium ML Toolkit with Advanced RAG, Reranking, Summarization, and Information Flow Analysis
1,665 lines (1,324 loc) • 45.8 kB
Markdown
# Advanced ELM Variants - Real-World Business Examples
Practical business applications of Astermind Pro's advanced ELM variants across finance, healthcare, retail, manufacturing, and other industries.
## Table of Contents
1. [Finance & Banking](#finance--banking)
2. [Healthcare & Life Sciences](#healthcare--life-sciences)
3. [Retail & E-commerce](#retail--e-commerce)
4. [Manufacturing & Supply Chain](#manufacturing--supply-chain)
5. [Legal & Compliance](#legal--compliance)
6. [Marketing & Advertising](#marketing--advertising)
7. [Insurance](#insurance)
8. [Real Estate](#real-estate)
9. [Energy & Utilities](#energy--utilities)
10. [Telecommunications](#telecommunications)
## Finance & Banking
### 1. Fraud Detection with Online Kernel ELM
**Business Problem:** Detect fraudulent credit card transactions in real-time as they occur.
**Solution:** Use Online Kernel ELM to continuously learn from streaming transaction data and adapt to new fraud patterns.
**Implementation:**
```typescript
import { OnlineKernelELM } from '@astermind/astermind-pro';
// Real-time fraud detection system
const fraudDetector = new OnlineKernelELM({
kernel: { type: 'rbf', gamma: 0.1 },
categories: ['legitimate', 'fraud'],
windowSize: 10000, // Keep last 10,000 transactions
decayFactor: 0.99, // Gradual decay for pattern adaptation
ridgeLambda: 0.001,
});
// Initial training on historical data
const historicalTransactions = [
{
amount: 150.00,
merchant: 'grocery_store',
timeOfDay: 14,
location: 'US',
cardType: 'credit',
// ... more features
},
// ... more transactions
];
const historicalLabels = [0, 0, 1, 0, ...]; // 1 = fraud
fraudDetector.fit(
historicalTransactions.map(t => extractFeatures(t)),
historicalLabels
);
// Real-time fraud detection
function processTransaction(transaction: Transaction) {
const features = extractFeatures(transaction);
// Update model with new transaction (labeled by fraud team)
if (transaction.reviewedByFraudTeam) {
fraudDetector.update(features, transaction.isFraud ? 1 : 0);
}
// Predict in real-time
const prediction = fraudDetector.predict(features, 1);
if (prediction[0].label === 'fraud' && prediction[0].prob > 0.85) {
// Block transaction and alert fraud team
blockTransaction(transaction);
alertFraudTeam(transaction, prediction[0].prob);
}
}
// Extract features from transaction
function extractFeatures(t: Transaction): number[] {
return [
t.amount / 1000, // Normalized amount
t.timeOfDay / 24,
encodeMerchant(t.merchant),
encodeLocation(t.location),
// ... more features
];
}
```
**Business Impact:**
- Real-time fraud detection (milliseconds)
- Adapts to new fraud patterns automatically
- Reduces false positives through continuous learning
- **ROI:** Prevents $X million in fraudulent transactions annually
### 2. Credit Risk Assessment with Multi-Task ELM
**Business Problem:** Assess multiple risk factors simultaneously: default probability, credit limit recommendation, and loan approval decision.
**Solution:** Use Multi-Task ELM to jointly predict default risk, optimal credit limit, and approval recommendation.
**Implementation:**
```typescript
import { MultiTaskELM } from '@astermind/astermind-pro';
// Credit risk assessment system
const creditRiskModel = new MultiTaskELM({
tasks: [
{
name: 'default_risk',
categories: ['low', 'medium', 'high', 'very_high'],
weight: 2.0, // Most important
},
{
name: 'credit_limit',
categories: ['$500', '$1000', '$5000', '$10000', '$20000+'],
weight: 1.5,
},
{
name: 'approval',
categories: ['approve', 'reject', 'manual_review'],
weight: 1.0,
},
],
sharedHiddenUnits: 512,
taskSpecificHiddenUnits: [256, 256, 128],
activation: 'relu',
useTokenizer: false,
});
// Customer application data
const applications = [
{
creditScore: 720,
income: 75000,
debtToIncome: 0.25,
employmentYears: 5,
// ... more features
},
// ... more applications
];
// Prepare task labels
const defaultRiskLabels = [0, 1, 2, 3, ...]; // low, medium, high, very_high
const creditLimitLabels = [1, 2, 3, 4, ...]; // $1000, $5000, $10000, $20000+
const approvalLabels = [0, 0, 1, ...]; // approve, reject, manual_review
const yTaskData = new Map([
['default_risk', defaultRiskLabels],
['credit_limit', creditLimitLabels],
['approval', approvalLabels],
]);
creditRiskModel.train(
applications.map(a => extractFeatures(a)),
yTaskData
);
// Assess new application
function assessCreditApplication(application: Application) {
const features = extractFeatures(application);
const predictions = creditRiskModel.predict(features, 1);
const defaultRisk = predictions.get('default_risk')?.[0];
const creditLimit = predictions.get('credit_limit')?.[0];
const approval = predictions.get('approval')?.[0];
return {
defaultRisk: defaultRisk?.label,
defaultRiskProbability: defaultRisk?.prob,
recommendedCreditLimit: creditLimit?.label,
approvalDecision: approval?.label,
confidence: approval?.prob,
};
}
// Example output:
// {
// defaultRisk: 'low',
// defaultRiskProbability: 0.92,
// recommendedCreditLimit: '$10000',
// approvalDecision: 'approve',
// confidence: 0.88
// }
```
**Business Impact:**
- Faster loan processing (automated decisions)
- Better risk assessment accuracy
- Optimized credit limits (maximize revenue, minimize defaults)
- **ROI:** Reduces default rate by X%, increases loan volume by Y%
### 3. Stock Market Sentiment Analysis with Multi-Kernel ELM
**Business Problem:** Analyze financial news and social media to predict stock price movements by combining multiple information sources.
**Solution:** Use Multi-Kernel ELM to combine linear patterns (direct correlations) and non-linear patterns (complex relationships) from financial text data.
**Implementation:**
```typescript
import { MultiKernelELM } from '@astermind/astermind-pro';
import { tokenize } from '@astermind/astermind-pro';
// Financial sentiment analysis
const sentimentAnalyzer = new MultiKernelELM(['bullish', 'bearish', 'neutral'], {
kernels: [
{ type: 'rbf', params: { gamma: 0.01 } }, // Non-linear patterns
{ type: 'linear' }, // Linear patterns
],
learnWeights: true, // Automatically learn optimal combination
ridgeLambda: 0.001,
});
// Financial news and social media data
const financialTexts = [
'Company XYZ reports record quarterly earnings, stock surges',
'Market crash fears as inflation rises',
'Analysts downgrade tech sector outlook',
// ... more texts
];
// Historical stock price movements (labels)
const priceMovements = [
1, // bullish (price went up)
2, // bearish (price went down)
2, // bearish
// ... more labels
];
// Convert texts to features
const X = financialTexts.map(text => {
const tokens = tokenize(text, true);
// Use TF-IDF or embeddings in practice
return tokensToFeatures(tokens);
});
sentimentAnalyzer.fit(X, priceMovements);
// Analyze new financial text
function analyzeFinancialSentiment(text: string) {
const features = tokensToFeatures(tokenize(text, true));
const prediction = sentimentAnalyzer.predict(features, 1);
return {
sentiment: prediction[0].label,
confidence: prediction[0].prob,
// Get learned kernel weights to understand which patterns matter
kernelWeights: sentimentAnalyzer.getKernelWeights(),
};
}
// Example: Analyze earnings call transcript
const earningsCall = 'We expect strong growth in Q4...';
const analysis = analyzeFinancialSentiment(earningsCall);
// Output: { sentiment: 'bullish', confidence: 0.87, kernelWeights: [0.65, 0.35] }
```
**Business Impact:**
- Real-time market sentiment tracking
- Better trading signal generation
- Automated news monitoring
- **ROI:** Improves trading strategy returns by X%
### 4. Anti-Money Laundering (AML) Detection with Sparse ELM
**Business Problem:** Detect suspicious transactions from millions of daily transactions with high-dimensional features (1000+ features per transaction).
**Solution:** Use Sparse ELM to identify the most important features for AML detection and create an interpretable, efficient model.
**Implementation:**
```typescript
import { SparseELM } from '@astermind/astermind-pro';
// AML detection system
const amlDetector = new SparseELM({
categories: ['normal', 'suspicious', 'high_risk'],
hiddenUnits: 512,
regularization: {
type: 'l1', // L1 for feature selection
lambda: 0.01,
},
sparsityTarget: 0.8, // 80% sparsity for efficiency
pruneThreshold: 1e-6,
});
// Transaction features (1000+ dimensions)
// Features include: amount, frequency, geographic patterns,
// network analysis, time patterns, entity relationships, etc.
const transactions = [
[0.1, 0.0, 0.0, 0.3, 0.0, 0.0, 0.2, ...], // 1000+ features
[0.0, 0.2, 0.0, 0.0, 0.1, 0.0, 0.0, ...],
// ... millions of transactions
];
const labels = [0, 1, 2, ...]; // normal, suspicious, high_risk
amlDetector.train(transactions, labels);
// Get feature importance to understand what signals matter
const importance = amlDetector.getFeatureImportance();
const topRiskFeatures = importance
.map((imp, idx) => ({ feature: featureNames[idx], importance: imp }))
.filter(f => f.importance > 0.1)
.sort((a, b) => b.importance - a.importance);
console.log('Top AML risk indicators:');
topRiskFeatures.forEach(({ feature, importance }) => {
console.log(` ${feature}: ${(importance * 100).toFixed(1)}%`);
});
// Detect suspicious transactions
function detectAML(transaction: Transaction) {
const features = extractTransactionFeatures(transaction);
const prediction = amlDetector.predict(features, 1);
if (prediction[0].label !== 'normal') {
// Flag for compliance review
flagForReview(transaction, {
riskLevel: prediction[0].label,
confidence: prediction[0].prob,
topFeatures: topRiskFeatures.slice(0, 5), // Explainable AI
});
}
}
```
**Business Impact:**
- Efficient processing of millions of transactions
- Interpretable results (compliance teams can understand why flagged)
- Reduced false positives through feature selection
- **ROI:** Meets regulatory requirements, avoids fines ($X million)
### 5. Algorithmic Trading with DeepELMPro
**Business Problem:** Predict stock price movements using deep feature hierarchies from multiple data sources (price, volume, news, social media).
**Solution:** Use DeepELMPro with pretraining to learn hierarchical patterns in financial data.
**Implementation:**
```typescript
import { DeepELMPro } from '@astermind/astermind-pro';
// Algorithmic trading prediction model
const tradingModel = new DeepELMPro({
layers: [512, 256, 128, 64], // Deep network for complex patterns
categories: ['buy', 'hold', 'sell'],
activation: 'relu',
pretraining: true, // Pretrain layers to learn financial patterns
layerWiseTraining: true, // Sequential training for stability
regularization: {
type: 'l2',
lambda: 0.0001,
},
useBatchNorm: true, // Stabilize training
useDropout: true,
dropoutRate: 0.2,
maxLen: 1000,
});
// Multi-source financial data
// Features: price history, volume, technical indicators,
// news sentiment, social media sentiment, market indicators
const marketData = [
{
priceHistory: [100, 101, 102, ...],
volume: [1000000, 1200000, ...],
technicalIndicators: [0.5, 0.6, ...],
newsSentiment: 0.7,
socialSentiment: 0.65,
marketIndicators: [0.3, 0.4, ...],
},
// ... more data
];
const tradingSignals = [0, 1, 2, ...]; // buy, hold, sell
await tradingModel.train(
marketData.map(d => flattenFeatures(d)),
tradingSignals
);
// Generate trading signal
function generateTradingSignal(currentMarketData: MarketData) {
const features = flattenFeatures(currentMarketData);
const prediction = tradingModel.predict(features, 1);
return {
action: prediction[0].label,
confidence: prediction[0].prob,
// Use for automated trading or trader alerts
};
}
```
**Business Impact:**
- Better prediction accuracy through deep learning
- Handles complex multi-source data
- Reduces overfitting with regularization
- **ROI:** Improves trading strategy Sharpe ratio by X%
## Healthcare & Life Sciences
### 1. Disease Diagnosis with Multi-Task ELM
**Business Problem:** Diagnose patients by predicting disease type, severity, and recommended treatment simultaneously.
**Solution:** Use Multi-Task ELM to leverage shared patient features across multiple diagnostic tasks.
**Implementation:**
```typescript
import { MultiTaskELM } from '@astermind/astermind-pro';
// Medical diagnosis system
const diagnosisModel = new MultiTaskELM({
tasks: [
{
name: 'disease',
categories: ['diabetes', 'hypertension', 'heart_disease', 'none'],
weight: 2.0, // Most critical
},
{
name: 'severity',
categories: ['mild', 'moderate', 'severe', 'critical'],
weight: 1.5,
},
{
name: 'treatment',
categories: ['medication', 'lifestyle', 'surgery', 'monitoring'],
weight: 1.0,
},
],
sharedHiddenUnits: 512,
taskSpecificHiddenUnits: [256, 256, 128],
});
// Patient data
const patients = [
{
age: 55,
bmi: 28.5,
bloodPressure: [140, 90],
glucose: 110,
cholesterol: 220,
// ... more vitals
},
// ... more patients
];
const diseaseLabels = [0, 1, 2, 0, ...];
const severityLabels = [1, 2, 1, 0, ...];
const treatmentLabels = [0, 1, 0, 3, ...];
const yTaskData = new Map([
['disease', diseaseLabels],
['severity', severityLabels],
['treatment', treatmentLabels],
]);
diagnosisModel.train(
patients.map(p => extractPatientFeatures(p)),
yTaskData
);
// Diagnose new patient
function diagnosePatient(patient: Patient) {
const features = extractPatientFeatures(patient);
const predictions = diagnosisModel.predict(features, 1);
return {
disease: predictions.get('disease')?.[0].label,
severity: predictions.get('severity')?.[0].label,
recommendedTreatment: predictions.get('treatment')?.[0].label,
confidence: predictions.get('disease')?.[0].prob,
};
}
```
**Business Impact:**
- Faster diagnosis (reduces time from hours to minutes)
- More accurate multi-faceted diagnosis
- Better treatment recommendations
- **ROI:** Reduces misdiagnosis rate by X%, improves patient outcomes
### 2. Drug Discovery with Sparse ELM
**Business Problem:** Identify promising drug compounds from millions of molecular features (genes, proteins, pathways).
**Solution:** Use Sparse ELM to identify the most important molecular features for drug efficacy.
**Implementation:**
```typescript
import { SparseELM } from '@astermind/astermind-pro';
// Drug discovery system
const drugDiscoveryModel = new SparseELM({
categories: ['effective', 'ineffective', 'toxic'],
hiddenUnits: 1024,
regularization: {
type: 'l1',
lambda: 0.1, // Strong L1 for feature selection
},
sparsityTarget: 0.9, // Very sparse - only key features matter
});
// Molecular compound data (10,000+ features)
// Features: gene expressions, protein interactions,
// pathway activations, chemical properties, etc.
const compounds = [
[0.1, 0.0, 0.0, 0.3, 0.0, ...], // 10,000+ features
[0.0, 0.2, 0.0, 0.0, 0.1, ...],
// ... thousands of compounds
];
const efficacyLabels = [0, 1, 2, ...]; // effective, ineffective, toxic
drugDiscoveryModel.train(compounds, efficacyLabels);
// Identify important biomarkers
const importance = drugDiscoveryModel.getFeatureImportance();
const keyBiomarkers = importance
.map((imp, idx) => ({ biomarker: biomarkerNames[idx], importance: imp }))
.filter(b => b.importance > 0.15)
.sort((a, b) => b.importance - a.importance);
console.log('Key biomarkers for drug efficacy:');
keyBiomarkers.forEach(({ biomarker, importance }) => {
console.log(` ${biomarker}: ${(importance * 100).toFixed(1)}%`);
});
// Screen new compounds
function screenCompound(compound: Compound) {
const features = extractCompoundFeatures(compound);
const prediction = drugDiscoveryModel.predict(features, 1);
if (prediction[0].label === 'effective' && prediction[0].prob > 0.8) {
// Prioritize for further testing
prioritizeForTesting(compound, {
efficacy: prediction[0].label,
confidence: prediction[0].prob,
keyBiomarkers: keyBiomarkers.slice(0, 10),
});
}
}
```
**Business Impact:**
- Faster drug candidate identification
- Reduced R&D costs (focus on promising compounds)
- Interpretable results (scientists understand why)
- **ROI:** Reduces drug discovery time from 10 years to X years, saves $X billion
### 3. Patient Monitoring with Online Kernel ELM
**Business Problem:** Monitor ICU patients in real-time and detect deterioration early.
**Solution:** Use Online Kernel ELM to continuously learn from streaming patient vitals and adapt to individual patient patterns.
**Implementation:**
```typescript
import { OnlineKernelELM } from '@astermind/astermind-pro';
// Real-time patient monitoring
const patientMonitor = new OnlineKernelELM({
kernel: { type: 'rbf', gamma: 0.1 },
categories: ['stable', 'deteriorating', 'critical'],
windowSize: 1000, // Last 1000 readings
decayFactor: 0.95, // Fast adaptation
});
// Initial training on historical patient data
const historicalVitals = [
{ heartRate: 72, bloodPressure: [120, 80], oxygen: 98, ... },
// ... more readings
];
patientMonitor.fit(
historicalVitals.map(v => extractVitalFeatures(v)),
historicalLabels
);
// Real-time monitoring
function monitorPatient(patientId: string, vitals: Vitals) {
const features = extractVitalFeatures(vitals);
// Update model with new reading (labeled by medical staff)
if (vitals.reviewedByStaff) {
patientMonitor.update(features, vitals.status);
}
// Predict patient status
const prediction = patientMonitor.predict(features, 1);
if (prediction[0].label === 'deteriorating' || prediction[0].label === 'critical') {
// Alert medical staff
alertMedicalStaff(patientId, {
status: prediction[0].label,
confidence: prediction[0].prob,
vitals: vitals,
});
}
}
// Extract features from vitals
function extractVitalFeatures(v: Vitals): number[] {
return [
v.heartRate / 200, // Normalized
v.bloodPressure[0] / 200,
v.bloodPressure[1] / 150,
v.oxygen / 100,
// ... more features
];
}
```
**Business Impact:**
- Early detection of patient deterioration
- Reduced ICU mortality rates
- Real-time alerts to medical staff
- **ROI:** Reduces ICU mortality by X%, saves lives and reduces costs
## Retail & E-commerce
### 1. Product Recommendation with Multi-Kernel ELM
**Business Problem:** Recommend products to customers by combining purchase history (linear patterns) and browsing behavior (non-linear patterns).
**Solution:** Use Multi-Kernel ELM to combine different types of customer behavior patterns.
**Implementation:**
```typescript
import { MultiKernelELM } from '@astermind/astermind-pro';
// Product recommendation system
const recommender = new MultiKernelELM(['product1', 'product2', 'product3', ...], {
kernels: [
{ type: 'rbf', params: { gamma: 0.01 } }, // Non-linear browsing patterns
{ type: 'linear' }, // Linear purchase patterns
],
learnWeights: true,
});
// Customer features: purchase history, browsing behavior,
// demographics, preferences, etc.
const customers = [
{
purchaseHistory: [1, 0, 1, 0, ...], // Products purchased
browsingTime: [120, 45, 300, ...], // Time spent on each category
demographics: [35, 1, 0, ...], // Age, gender, location
preferences: [0.8, 0.2, 0.9, ...], // Preference scores
},
// ... more customers
];
const recommendedProducts = [0, 1, 2, ...]; // Product IDs
recommender.fit(
customers.map(c => flattenCustomerFeatures(c)),
recommendedProducts
);
// Recommend products for new customer
function recommendProducts(customer: Customer) {
const features = flattenCustomerFeatures(customer);
const recommendations = recommender.predict(features, 10); // Top 10
return recommendations.map(r => ({
productId: r.label,
relevanceScore: r.prob,
}));
}
```
**Business Impact:**
- Increased conversion rates
- Better personalization
- Higher average order value
- **ROI:** Increases revenue by X% through better recommendations
### 2. Inventory Demand Forecasting with Online Kernel ELM
**Business Problem:** Forecast product demand in real-time as sales data streams in, adapting to seasonal changes and trends.
**Solution:** Use Online Kernel ELM to continuously update demand forecasts from streaming sales data.
**Implementation:**
```typescript
import { OnlineKernelELM } from '@astermind/astermind-pro';
// Demand forecasting system
const demandForecaster = new OnlineKernelELM({
kernel: { type: 'rbf', gamma: 0.01 },
categories: ['low', 'medium', 'high', 'very_high'],
windowSize: 2000, // Last 2000 sales records
decayFactor: 0.98, // Gradual decay for trend adaptation
});
// Initial training on historical sales
const historicalSales = [
{
productId: 'P001',
date: '2024-01-01',
sales: 100,
season: 'winter',
promotions: true,
// ... more features
},
// ... more records
];
demandForecaster.fit(
historicalSales.map(s => extractSalesFeatures(s)),
historicalDemandLabels
);
// Real-time demand forecasting
function forecastDemand(product: Product, currentContext: Context) {
const features = extractSalesFeatures({
productId: product.id,
date: new Date(),
season: getCurrentSeason(),
promotions: currentContext.hasPromotions,
// ... more features
});
// Update with latest sales data
if (currentContext.latestSales) {
demandForecaster.update(features, currentContext.latestSales.demandLevel);
}
// Forecast demand
const forecast = demandForecaster.predict(features, 1);
return {
demandLevel: forecast[0].label,
confidence: forecast[0].prob,
// Use for inventory management
};
}
```
**Business Impact:**
- Reduced stockouts and overstock
- Better inventory optimization
- Adapts to trends automatically
- **ROI:** Reduces inventory costs by X%, increases sales by Y%
### 3. Customer Churn Prediction with DeepELMPro
**Business Problem:** Predict which customers will churn using complex patterns from transaction history, support interactions, and usage data.
**Solution:** Use DeepELMPro to learn hierarchical patterns in customer behavior.
**Implementation:**
```typescript
import { DeepELMPro } from '@astermind/astermind-pro';
// Customer churn prediction
const churnPredictor = new DeepELMPro({
layers: [256, 128, 64],
categories: ['retain', 'at_risk', 'churn'],
activation: 'relu',
pretraining: true,
regularization: {
type: 'l2',
lambda: 0.0001,
},
useDropout: true,
dropoutRate: 0.2,
});
// Customer data: transaction history, support tickets,
// usage patterns, demographics, etc.
const customers = [
{
transactionHistory: [100, 150, 200, ...],
supportTickets: 2,
usageFrequency: 0.8,
lastPurchaseDays: 5,
// ... more features
},
// ... more customers
];
const churnLabels = [0, 1, 2, ...]; // retain, at_risk, churn
await churnPredictor.train(
customers.map(c => extractCustomerFeatures(c)),
churnLabels
);
// Predict churn risk
function predictChurn(customer: Customer) {
const features = extractCustomerFeatures(customer);
const prediction = churnPredictor.predict(features, 1);
if (prediction[0].label === 'at_risk' || prediction[0].label === 'churn') {
// Trigger retention campaign
triggerRetentionCampaign(customer, {
riskLevel: prediction[0].label,
confidence: prediction[0].prob,
});
}
}
```
**Business Impact:**
- Proactive customer retention
- Reduced churn rate
- Better customer lifetime value
- **ROI:** Reduces churn by X%, saves $Y million in lost revenue
## Manufacturing & Supply Chain
### 1. Quality Control with Multi-Task ELM
**Business Problem:** Inspect products for multiple quality issues simultaneously: defects, dimensions, and material quality.
**Solution:** Use Multi-Task ELM to jointly predict multiple quality attributes.
**Implementation:
```typescript
import { MultiTaskELM } from '@astermind/astermind-pro';
// Quality control system
const qualityInspector = new MultiTaskELM({
tasks: [
{
name: 'defects',
categories: ['none', 'minor', 'major', 'critical'],
weight: 2.0,
},
{
name: 'dimensions',
categories: ['within_spec', 'out_of_spec'],
weight: 1.5,
},
{
name: 'material',
categories: ['good', 'acceptable', 'poor'],
weight: 1.0,
},
],
sharedHiddenUnits: 256,
taskSpecificHiddenUnits: [128, 128, 128],
});
// Product inspection data: images, sensor readings, measurements
const products = [
{
imageFeatures: [0.1, 0.2, 0.3, ...],
sensorReadings: [45.2, 23.1, 67.8, ...],
measurements: [10.0, 20.0, 15.0, ...],
},
// ... more products
];
const defectLabels = [0, 1, 2, 3, ...];
const dimensionLabels = [0, 1, 0, ...];
const materialLabels = [0, 1, 2, ...];
const yTaskData = new Map([
['defects', defectLabels],
['dimensions', dimensionLabels],
['material', materialLabels],
]);
qualityInspector.train(
products.map(p => extractProductFeatures(p)),
yTaskData
);
// Inspect product
function inspectProduct(product: Product) {
const features = extractProductFeatures(product);
const inspection = qualityInspector.predict(features, 1);
const defects = inspection.get('defects')?.[0];
const dimensions = inspection.get('dimensions')?.[0];
const material = inspection.get('material')?.[0];
if (defects?.label !== 'none' || dimensions?.label === 'out_of_spec' || material?.label === 'poor') {
// Reject product
rejectProduct(product, {
defects: defects?.label,
dimensions: dimensions?.label,
material: material?.label,
});
}
}
```
**Business Impact:**
- Faster quality inspection
- More comprehensive quality checks
- Reduced defective products reaching customers
- **ROI:** Reduces defect rate by X%, saves $Y in warranty costs
### 2. Predictive Maintenance with Online Kernel ELM
**Business Problem:** Predict equipment failures in real-time from streaming sensor data.
**Solution:** Use Online Kernel ELM to continuously monitor equipment and adapt to changing conditions.
**Implementation:**
```typescript
import { OnlineKernelELM } from '@astermind/astermind-pro';
// Predictive maintenance system
const maintenancePredictor = new OnlineKernelELM({
kernel: { type: 'rbf', gamma: 0.1 },
categories: ['normal', 'warning', 'critical', 'failure'],
windowSize: 5000, // Last 5000 sensor readings
decayFactor: 0.99,
});
// Initial training on historical sensor data
const historicalSensorData = [
{
temperature: 75.2,
vibration: 0.5,
pressure: 100.5,
// ... more sensors
},
// ... more readings
];
maintenancePredictor.fit(
historicalSensorData.map(d => extractSensorFeatures(d)),
historicalStatusLabels
);
// Real-time monitoring
function monitorEquipment(equipmentId: string, sensorData: SensorData) {
const features = extractSensorFeatures(sensorData);
// Update with latest reading (labeled by maintenance team)
if (sensorData.reviewedByMaintenance) {
maintenancePredictor.update(features, sensorData.status);
}
// Predict equipment status
const prediction = maintenancePredictor.predict(features, 1);
if (prediction[0].label === 'warning' || prediction[0].label === 'critical') {
// Schedule maintenance
scheduleMaintenance(equipmentId, {
status: prediction[0].label,
confidence: prediction[0].prob,
sensorData: sensorData,
});
}
}
```
**Business Impact:**
- Prevents unexpected equipment failures
- Optimized maintenance scheduling
- Reduced downtime
- **ROI:** Reduces unplanned downtime by X%, saves $Y in production losses
## Legal & Compliance
### 1. Contract Analysis with Multi-Kernel ELM
**Business Problem:** Classify legal contracts by type, risk level, and required actions by analyzing both structured (clauses) and unstructured (language patterns) content.
**Solution:** Use Multi-Kernel ELM to combine linear clause patterns and non-linear language patterns.
**Implementation:**
```typescript
import { MultiKernelELM } from '@astermind/astermind-pro';
import { tokenize } from '@astermind/astermind-pro';
// Contract analysis system
const contractAnalyzer = new MultiKernelELM([
'employment',
'nda',
'service_agreement',
'purchase_order',
'other'
], {
kernels: [
{ type: 'rbf', params: { gamma: 0.01 } }, // Language patterns
{ type: 'linear' }, // Clause patterns
],
learnWeights: true,
});
// Contract texts
const contracts = [
'This Employment Agreement is entered into...',
'This Non-Disclosure Agreement...',
// ... more contracts
];
const contractTypes = [0, 1, 2, ...];
// Convert to features
const X = contracts.map(contract => {
const tokens = tokenize(contract, true);
// Extract clause features and language features
return combineFeatures(
extractClauseFeatures(contract),
extractLanguageFeatures(tokens)
);
});
contractAnalyzer.fit(X, contractTypes);
// Analyze new contract
function analyzeContract(contractText: string) {
const tokens = tokenize(contractText, true);
const features = combineFeatures(
extractClauseFeatures(contractText),
extractLanguageFeatures(tokens)
);
const prediction = contractAnalyzer.predict(features, 1);
return {
contractType: prediction[0].label,
confidence: prediction[0].prob,
// Route to appropriate legal team
};
}
```
**Business Impact:**
- Faster contract processing
- Automated contract routing
- Better risk assessment
- **ROI:** Reduces legal review time by X%, saves $Y in legal costs
### 2. Regulatory Compliance Monitoring with Sparse ELM
**Business Problem:** Monitor transactions and activities for compliance violations across thousands of regulatory features.
**Solution:** Use Sparse ELM to identify the most important compliance signals and create an interpretable model.
**Implementation:**
```typescript
import { SparseELM } from '@astermind/astermind-pro';
// Compliance monitoring system
const complianceMonitor = new SparseELM({
categories: ['compliant', 'review_required', 'violation'],
hiddenUnits: 512,
regularization: {
type: 'l1',
lambda: 0.01,
},
sparsityTarget: 0.85, // Very sparse for interpretability
});
// Transaction/activity data (1000+ compliance features)
const activities = [
[0.1, 0.0, 0.0, 0.3, 0.0, ...], // 1000+ features
// ... more activities
];
const complianceLabels = [0, 1, 2, ...];
complianceMonitor.train(activities, complianceLabels);
// Get important compliance signals
const importance = complianceMonitor.getFeatureImportance();
const keySignals = importance
.map((imp, idx) => ({ signal: complianceFeatureNames[idx], importance: imp }))
.filter(s => s.importance > 0.1)
.sort((a, b) => b.importance - a.importance);
// Monitor new activity
function monitorCompliance(activity: Activity) {
const features = extractComplianceFeatures(activity);
const prediction = complianceMonitor.predict(features, 1);
if (prediction[0].label !== 'compliant') {
// Flag for compliance review
flagForReview(activity, {
status: prediction[0].label,
confidence: prediction[0].prob,
keySignals: keySignals.slice(0, 5), // Explainable
});
}
}
```
**Business Impact:**
- Automated compliance monitoring
- Interpretable results (auditors can understand)
- Reduced compliance violations
- **ROI:** Prevents regulatory fines ($X million), reduces audit costs
## Marketing & Advertising
### 1. Customer Segmentation with DeepELMPro
**Business Problem:** Segment customers into detailed personas using complex behavioral patterns from multiple data sources.
**Solution:** Use DeepELMPro to learn hierarchical customer patterns.
**Implementation:**
```typescript
import { DeepELMPro } from '@astermind/astermind-pro';
// Customer segmentation
const segmenter = new DeepELMPro({
layers: [256, 128, 64],
categories: ['price_sensitive', 'quality_seeker', 'brand_loyal', 'bargain_hunter', 'impulse_buyer'],
activation: 'relu',
pretraining: true,
regularization: {
type: 'l2',
lambda: 0.0001,
},
});
// Customer data: purchase history, browsing, demographics,
// social media, preferences, etc.
const customers = [
{
purchaseHistory: [100, 150, 200, ...],
browsingBehavior: [0.8, 0.2, 0.9, ...],
demographics: [35, 1, 0, ...],
socialMediaActivity: [50, 30, 20, ...],
},
// ... more customers
];
const segmentLabels = [0, 1, 2, 3, 4, ...];
await segmenter.train(
customers.map(c => extractCustomerFeatures(c)),
segmentLabels
);
// Segment new customer
function segmentCustomer(customer: Customer) {
const features = extractCustomerFeatures(customer);
const prediction = segmenter.predict(features, 1);
return {
segment: prediction[0].label,
confidence: prediction[0].prob,
// Use for targeted marketing campaigns
};
}
```
**Business Impact:**
- Better customer targeting
- Improved marketing ROI
- Personalized campaigns
- **ROI:** Increases marketing conversion by X%, improves ROI by Y%
### 2. Ad Performance Prediction with Multi-Kernel ELM
**Business Problem:** Predict ad performance by combining click-through patterns (linear) and engagement patterns (non-linear).
**Solution:** Use Multi-Kernel ELM to combine different types of ad performance signals.
**Implementation:**
```typescript
import { MultiKernelELM } from '@astermind/astermind-pro';
// Ad performance prediction
const adPredictor = new MultiKernelELM(['low', 'medium', 'high', 'very_high'], {
kernels: [
{ type: 'rbf', params: { gamma: 0.01 } }, // Engagement patterns
{ type: 'linear' }, // Click patterns
],
learnWeights: true,
});
// Ad features: creative, targeting, placement, timing, etc.
const ads = [
{
creativeFeatures: [0.8, 0.2, 0.9, ...],
targetingFeatures: [0.5, 0.7, 0.3, ...],
placementFeatures: [0.6, 0.4, 0.8, ...],
},
// ... more ads
];
const performanceLabels = [0, 1, 2, 3, ...];
adPredictor.fit(
ads.map(a => flattenAdFeatures(a)),
performanceLabels
);
// Predict ad performance
function predictAdPerformance(ad: Ad) {
const features = flattenAdFeatures(ad);
const prediction = adPredictor.predict(features, 1);
return {
expectedPerformance: prediction[0].label,
confidence: prediction[0].prob,
// Use for ad budget allocation
};
}
```
**Business Impact:**
- Better ad budget allocation
- Improved ad performance
- Reduced wasted ad spend
- **ROI:** Increases ad ROI by X%, reduces wasted spend by $Y
## Insurance
### 1. Claims Fraud Detection with Sparse ELM
**Business Problem:** Detect fraudulent insurance claims from high-dimensional claim data (1000+ features per claim).
**Solution:** Use Sparse ELM to identify key fraud indicators and create an interpretable model.
**Implementation:**
```typescript
import { SparseELM } from '@astermind/astermind-pro';
// Claims fraud detection
const fraudDetector = new SparseELM({
categories: ['legitimate', 'suspicious', 'fraud'],
hiddenUnits: 512,
regularization: {
type: 'l1',
lambda: 0.01,
},
sparsityTarget: 0.8,
});
// Claim data (1000+ features)
const claims = [
[0.1, 0.0, 0.0, 0.3, 0.0, ...], // 1000+ features
// ... more claims
];
const fraudLabels = [0, 1, 2, ...];
fraudDetector.train(claims, fraudLabels);
// Get key fraud indicators
const importance = fraudDetector.getFeatureImportance();
const fraudIndicators = importance
.map((imp, idx) => ({ indicator: claimFeatureNames[idx], importance: imp }))
.filter(i => i.importance > 0.1)
.sort((a, b) => b.importance - a.importance);
// Detect fraud
function detectFraud(claim: Claim) {
const features = extractClaimFeatures(claim);
const prediction = fraudDetector.predict(features, 1);
if (prediction[0].label !== 'legitimate') {
flagForInvestigation(claim, {
riskLevel: prediction[0].label,
confidence: prediction[0].prob,
indicators: fraudIndicators.slice(0, 5),
});
}
}
```
**Business Impact:**
- Reduced fraudulent claims
- Interpretable fraud detection
- Faster claim processing
- **ROI:** Prevents $X million in fraudulent claims annually
### 2. Risk Assessment with Multi-Task ELM
**Business Problem:** Assess insurance risk across multiple dimensions: claim probability, claim severity, and premium recommendation.
**Solution:** Use Multi-Task ELM to jointly predict multiple risk factors.
**Implementation:**
```typescript
import { MultiTaskELM } from '@astermind/astermind-pro';
// Insurance risk assessment
const riskAssessor = new MultiTaskELM({
tasks: [
{
name: 'claim_probability',
categories: ['low', 'medium', 'high', 'very_high'],
weight: 2.0,
},
{
name: 'claim_severity',
categories: ['low', 'medium', 'high'],
weight: 1.5,
},
{
name: 'premium',
categories: ['standard', 'increased', 'high', 'decline'],
weight: 1.0,
},
],
sharedHiddenUnits: 256,
taskSpecificHiddenUnits: [128, 128, 128],
});
// Policyholder data
const policyholders = [
{
age: 35,
drivingRecord: [0, 1, 0, ...], // Accidents, violations
vehicleType: 'sedan',
location: 'urban',
// ... more features
},
// ... more policyholders
];
const claimProbLabels = [0, 1, 2, 3, ...];
const severityLabels = [0, 1, 2, ...];
const premiumLabels = [0, 1, 2, 3, ...];
const yTaskData = new Map([
['claim_probability', claimProbLabels],
['claim_severity', severityLabels],
['premium', premiumLabels],
]);
riskAssessor.train(
policyholders.map(p => extractPolicyholderFeatures(p)),
yTaskData
);
// Assess risk
function assessRisk(policyholder: Policyholder) {
const features = extractPolicyholderFeatures(policyholder);
const assessment = riskAssessor.predict(features, 1);
return {
claimProbability: assessment.get('claim_probability')?.[0].label,
claimSeverity: assessment.get('claim_severity')?.[0].label,
recommendedPremium: assessment.get('premium')?.[0].label,
};
}
```
**Business Impact:**
- Better risk pricing
- Reduced underwriting losses
- Optimized premium recommendations
- **ROI:** Improves underwriting profitability by X%
## Real Estate
### 1. Property Valuation with Multi-Kernel ELM
**Business Problem:** Estimate property values by combining location features (linear) and property characteristics (non-linear).
**Solution:** Use Multi-Kernel ELM to combine different types of property features.
**Implementation:**
```typescript
import { MultiKernelELM } from '@astermind/astermind-pro';
// Property valuation
const propertyValuer = new MultiKernelELM([
'$100k-$200k',
'$200k-$300k',
'$300k-$500k',
'$500k-$750k',
'$750k+'
], {
kernels: [
{ type: 'rbf', params: { gamma: 0.01 } }, // Property characteristics
{ type: 'linear' }, // Location features
],
learnWeights: true,
});
// Property data
const properties = [
{
locationFeatures: [0.8, 0.2, 0.9, ...], // School ratings, crime, amenities
propertyFeatures: [3, 2, 1500, ...], // Bedrooms, bathrooms, sqft
marketFeatures: [0.7, 0.5, ...], // Market trends, inventory
},
// ... more properties
];
const priceRangeLabels = [0, 1, 2, 3, 4, ...];
propertyValuer.fit(
properties.map(p => flattenPropertyFeatures(p)),
priceRangeLabels
);
// Estimate property value
function estimateValue(property: Property) {
const features = flattenPropertyFeatures(property);
const prediction = propertyValuer.predict(features, 1);
return {
priceRange: prediction[0].label,
confidence: prediction[0].prob,
};
}
```
**Business Impact:**
- Faster property valuations
- More accurate pricing
- Better investment decisions
- **ROI:** Improves pricing accuracy by X%, increases sales velocity
## Energy & Utilities
### 1. Energy Demand Forecasting with Online Kernel ELM
**Business Problem:** Forecast energy demand in real-time from streaming consumption data, adapting to weather and events.
**Solution:** Use Online Kernel ELM to continuously update demand forecasts.
**Implementation:**
```typescript
import { OnlineKernelELM } from '@astermind/astermind-pro';
// Energy demand forecasting
const demandForecaster = new OnlineKernelELM({
kernel: { type: 'rbf', gamma: 0.01 },
categories: ['low', 'medium', 'high', 'peak'],
windowSize: 2000,
decayFactor: 0.98,
});
// Historical consumption data
const consumptionData = [
{
time: '2024-01-01 10:00',
temperature: 72,
weather: 'sunny',
dayOfWeek: 1,
consumption: 1000,
},
// ... more data
];
demandForecaster.fit(
consumptionData.map(d => extractConsumptionFeatures(d)),
consumptionLabels
);
// Forecast demand
function forecastDemand(currentContext: Context) {
const features = extractConsumptionFeatures({
time: new Date(),
temperature: currentContext.temperature,
weather: currentContext.weather,
dayOfWeek: new Date().getDay(),
});
// Update with latest consumption
if (currentContext.latestConsumption) {
demandForecaster.update(features, currentContext.latestConsumption.level);
}
const forecast = demandForecaster.predict(features, 1);
return {
demandLevel: forecast[0].label,
confidence: forecast[0].prob,
// Use for grid management
};
}
```
**Business Impact:**
- Better grid management
- Reduced energy waste
- Optimized power generation
- **ROI:** Reduces energy costs by X%, improves grid stability
## Telecommunications
### 1. Network Anomaly Detection with Online Kernel ELM
**Business Problem:** Detect network anomalies in real-time from streaming network metrics.
**Solution:** Use Online Kernel ELM to continuously monitor network health.
**Implementation:**
```typescript
import { OnlineKernelELM } from '@astermind/astermind-pro';
// Network monitoring
const networkMonitor = new OnlineKernelELM({
kernel: { type: 'rbf', gamma: 0.1 },
categories: ['normal', 'degraded', 'critical', 'outage'],
windowSize: 5000,
decayFactor: 0.99,
});
// Network metrics
const networkMetrics = [
{
latency: 50,
packetLoss: 0.01,
bandwidth: 1000,
errorRate: 0.001,
},
// ... more metrics
];
networkMonitor.fit(
networkMetrics.map(m => extractNetworkFeatures(m)),
networkStatusLabels
);
// Monitor network
function monitorNetwork(metrics: NetworkMetrics) {
const features = extractNetworkFeatures(metrics);
if (metrics.reviewedByOps) {
networkMonitor.update(features, metrics.status);
}
const prediction = networkMonitor.predict(features, 1);
if (prediction[0].label !== 'normal') {
alertNetworkOps({
status: prediction[0].label,
confidence: prediction[0].prob,
metrics: metrics,
});
}
}
```
**Business Impact:**
- Proactive network issue detection
- Reduced downtime
- Better service quality
- **ROI:** Reduces network downtime by X%, improves customer satisfaction
## Summary: Choosing the Right Variant
### Use **Multi-Kernel ELM** when:
- You have heterogeneous data patterns
- Combining linear and non-linear patterns
- **Examples:** Financial sentiment, product recommendations, contract analysis
### Use **DeepELMPro** when:
- Complex hierarchical patterns
- Need better generalization
- **Examples:** Algorithmic trading, customer segmentation, churn prediction
### Use **Online Kernel ELM** when:
- Streaming/real-time data
- Data distribution changes over time
- **Examples:** Fraud detection, patient monitoring, demand forecasting
### Use **Multi-Task ELM** when:
- Multiple related predictions needed
- Tasks share underlying features
- **Examples:** Credit risk, disease diagnosis, quality control
### Use **Sparse ELM** when:
- High-dimensional data (1000+ features)
- Need interpretability
- Need efficiency
- **Examples:** Drug discovery, AML detection, compliance monitoring
## Business ROI Summary
| Industry | Use Case | ELM Variant | Key Benefit | Typical ROI |
|----------|----------|-------------|-------------|-------------|
| Finance | Fraud Detection | Online Kernel | Real-time adaptation | Prevents $X million/year |
| Finance | Credit Risk | Multi-Task | Multi-faceted assessment | Reduces defaults by X% |
| Healthcare | Disease Diagnosis | Multi-Task | Comprehensive diagnosis | Reduces misdiagnosis by X% |
| Healthcare | Drug Discovery | Sparse | Feature identification | Saves $X billion, 10→X years |
| Retail | Recommendations | Multi-Kernel | Better personalization | Increases revenue by X% |
| Retail | Demand Forecasting | Online Kernel | Real-time adaptation | Reduces inventory costs by X% |
| Manufacturing | Quality Control | Multi-Task | Comprehensive inspection | Reduces defects by X% |
| Legal | Contract Analysis | Multi-Kernel | Faster processing | Saves $Y in legal costs |
| Insurance | Fraud Detection | Sparse | Interpretable detection | Prevents $X million/year |
| Energy | Demand Forecasting | Online Kernel | Grid optimization | Reduces costs by X% |
## Next Steps
- See [ELM_VARIANTS_EXAMPLES.md](./ELM_VARIANTS_EXAMPLES.md) for technical implementation details
- Review [DEVELOPER_GUIDE.md](../guides/DEVELOPER_GUIDE.md) for advanced patterns
- Check [PREMIUM_FEATURES.md](./PREMIUM_FEATURES.md) for complete feature documentation