UNPKG

@astermind/astermind-pro

Version:

Astermind Pro - Premium ML Toolkit with Advanced RAG, Reranking, Summarization, and Information Flow Analysis

1,665 lines (1,324 loc) 45.8 kB
# Advanced ELM Variants - Real-World Business Examples Practical business applications of Astermind Pro's advanced ELM variants across finance, healthcare, retail, manufacturing, and other industries. --- ## Table of Contents 1. [Finance & Banking](#finance--banking) 2. [Healthcare & Life Sciences](#healthcare--life-sciences) 3. [Retail & E-commerce](#retail--e-commerce) 4. [Manufacturing & Supply Chain](#manufacturing--supply-chain) 5. [Legal & Compliance](#legal--compliance) 6. [Marketing & Advertising](#marketing--advertising) 7. [Insurance](#insurance) 8. [Real Estate](#real-estate) 9. [Energy & Utilities](#energy--utilities) 10. [Telecommunications](#telecommunications) --- ## Finance & Banking ### 1. Fraud Detection with Online Kernel ELM **Business Problem:** Detect fraudulent credit card transactions in real-time as they occur. **Solution:** Use Online Kernel ELM to continuously learn from streaming transaction data and adapt to new fraud patterns. **Implementation:** ```typescript import { OnlineKernelELM } from '@astermind/astermind-pro'; // Real-time fraud detection system const fraudDetector = new OnlineKernelELM({ kernel: { type: 'rbf', gamma: 0.1 }, categories: ['legitimate', 'fraud'], windowSize: 10000, // Keep last 10,000 transactions decayFactor: 0.99, // Gradual decay for pattern adaptation ridgeLambda: 0.001, }); // Initial training on historical data const historicalTransactions = [ { amount: 150.00, merchant: 'grocery_store', timeOfDay: 14, location: 'US', cardType: 'credit', // ... more features }, // ... more transactions ]; const historicalLabels = [0, 0, 1, 0, ...]; // 1 = fraud fraudDetector.fit( historicalTransactions.map(t => extractFeatures(t)), historicalLabels ); // Real-time fraud detection function processTransaction(transaction: Transaction) { const features = extractFeatures(transaction); // Update model with new transaction (labeled by fraud team) if (transaction.reviewedByFraudTeam) { fraudDetector.update(features, transaction.isFraud ? 1 : 0); } // Predict in real-time const prediction = fraudDetector.predict(features, 1); if (prediction[0].label === 'fraud' && prediction[0].prob > 0.85) { // Block transaction and alert fraud team blockTransaction(transaction); alertFraudTeam(transaction, prediction[0].prob); } } // Extract features from transaction function extractFeatures(t: Transaction): number[] { return [ t.amount / 1000, // Normalized amount t.timeOfDay / 24, encodeMerchant(t.merchant), encodeLocation(t.location), // ... more features ]; } ``` **Business Impact:** - Real-time fraud detection (milliseconds) - Adapts to new fraud patterns automatically - Reduces false positives through continuous learning - **ROI:** Prevents $X million in fraudulent transactions annually --- ### 2. Credit Risk Assessment with Multi-Task ELM **Business Problem:** Assess multiple risk factors simultaneously: default probability, credit limit recommendation, and loan approval decision. **Solution:** Use Multi-Task ELM to jointly predict default risk, optimal credit limit, and approval recommendation. **Implementation:** ```typescript import { MultiTaskELM } from '@astermind/astermind-pro'; // Credit risk assessment system const creditRiskModel = new MultiTaskELM({ tasks: [ { name: 'default_risk', categories: ['low', 'medium', 'high', 'very_high'], weight: 2.0, // Most important }, { name: 'credit_limit', categories: ['$500', '$1000', '$5000', '$10000', '$20000+'], weight: 1.5, }, { name: 'approval', categories: ['approve', 'reject', 'manual_review'], weight: 1.0, }, ], sharedHiddenUnits: 512, taskSpecificHiddenUnits: [256, 256, 128], activation: 'relu', useTokenizer: false, }); // Customer application data const applications = [ { creditScore: 720, income: 75000, debtToIncome: 0.25, employmentYears: 5, // ... more features }, // ... more applications ]; // Prepare task labels const defaultRiskLabels = [0, 1, 2, 3, ...]; // low, medium, high, very_high const creditLimitLabels = [1, 2, 3, 4, ...]; // $1000, $5000, $10000, $20000+ const approvalLabels = [0, 0, 1, ...]; // approve, reject, manual_review const yTaskData = new Map([ ['default_risk', defaultRiskLabels], ['credit_limit', creditLimitLabels], ['approval', approvalLabels], ]); creditRiskModel.train( applications.map(a => extractFeatures(a)), yTaskData ); // Assess new application function assessCreditApplication(application: Application) { const features = extractFeatures(application); const predictions = creditRiskModel.predict(features, 1); const defaultRisk = predictions.get('default_risk')?.[0]; const creditLimit = predictions.get('credit_limit')?.[0]; const approval = predictions.get('approval')?.[0]; return { defaultRisk: defaultRisk?.label, defaultRiskProbability: defaultRisk?.prob, recommendedCreditLimit: creditLimit?.label, approvalDecision: approval?.label, confidence: approval?.prob, }; } // Example output: // { // defaultRisk: 'low', // defaultRiskProbability: 0.92, // recommendedCreditLimit: '$10000', // approvalDecision: 'approve', // confidence: 0.88 // } ``` **Business Impact:** - Faster loan processing (automated decisions) - Better risk assessment accuracy - Optimized credit limits (maximize revenue, minimize defaults) - **ROI:** Reduces default rate by X%, increases loan volume by Y% --- ### 3. Stock Market Sentiment Analysis with Multi-Kernel ELM **Business Problem:** Analyze financial news and social media to predict stock price movements by combining multiple information sources. **Solution:** Use Multi-Kernel ELM to combine linear patterns (direct correlations) and non-linear patterns (complex relationships) from financial text data. **Implementation:** ```typescript import { MultiKernelELM } from '@astermind/astermind-pro'; import { tokenize } from '@astermind/astermind-pro'; // Financial sentiment analysis const sentimentAnalyzer = new MultiKernelELM(['bullish', 'bearish', 'neutral'], { kernels: [ { type: 'rbf', params: { gamma: 0.01 } }, // Non-linear patterns { type: 'linear' }, // Linear patterns ], learnWeights: true, // Automatically learn optimal combination ridgeLambda: 0.001, }); // Financial news and social media data const financialTexts = [ 'Company XYZ reports record quarterly earnings, stock surges', 'Market crash fears as inflation rises', 'Analysts downgrade tech sector outlook', // ... more texts ]; // Historical stock price movements (labels) const priceMovements = [ 1, // bullish (price went up) 2, // bearish (price went down) 2, // bearish // ... more labels ]; // Convert texts to features const X = financialTexts.map(text => { const tokens = tokenize(text, true); // Use TF-IDF or embeddings in practice return tokensToFeatures(tokens); }); sentimentAnalyzer.fit(X, priceMovements); // Analyze new financial text function analyzeFinancialSentiment(text: string) { const features = tokensToFeatures(tokenize(text, true)); const prediction = sentimentAnalyzer.predict(features, 1); return { sentiment: prediction[0].label, confidence: prediction[0].prob, // Get learned kernel weights to understand which patterns matter kernelWeights: sentimentAnalyzer.getKernelWeights(), }; } // Example: Analyze earnings call transcript const earningsCall = 'We expect strong growth in Q4...'; const analysis = analyzeFinancialSentiment(earningsCall); // Output: { sentiment: 'bullish', confidence: 0.87, kernelWeights: [0.65, 0.35] } ``` **Business Impact:** - Real-time market sentiment tracking - Better trading signal generation - Automated news monitoring - **ROI:** Improves trading strategy returns by X% --- ### 4. Anti-Money Laundering (AML) Detection with Sparse ELM **Business Problem:** Detect suspicious transactions from millions of daily transactions with high-dimensional features (1000+ features per transaction). **Solution:** Use Sparse ELM to identify the most important features for AML detection and create an interpretable, efficient model. **Implementation:** ```typescript import { SparseELM } from '@astermind/astermind-pro'; // AML detection system const amlDetector = new SparseELM({ categories: ['normal', 'suspicious', 'high_risk'], hiddenUnits: 512, regularization: { type: 'l1', // L1 for feature selection lambda: 0.01, }, sparsityTarget: 0.8, // 80% sparsity for efficiency pruneThreshold: 1e-6, }); // Transaction features (1000+ dimensions) // Features include: amount, frequency, geographic patterns, // network analysis, time patterns, entity relationships, etc. const transactions = [ [0.1, 0.0, 0.0, 0.3, 0.0, 0.0, 0.2, ...], // 1000+ features [0.0, 0.2, 0.0, 0.0, 0.1, 0.0, 0.0, ...], // ... millions of transactions ]; const labels = [0, 1, 2, ...]; // normal, suspicious, high_risk amlDetector.train(transactions, labels); // Get feature importance to understand what signals matter const importance = amlDetector.getFeatureImportance(); const topRiskFeatures = importance .map((imp, idx) => ({ feature: featureNames[idx], importance: imp })) .filter(f => f.importance > 0.1) .sort((a, b) => b.importance - a.importance); console.log('Top AML risk indicators:'); topRiskFeatures.forEach(({ feature, importance }) => { console.log(` ${feature}: ${(importance * 100).toFixed(1)}%`); }); // Detect suspicious transactions function detectAML(transaction: Transaction) { const features = extractTransactionFeatures(transaction); const prediction = amlDetector.predict(features, 1); if (prediction[0].label !== 'normal') { // Flag for compliance review flagForReview(transaction, { riskLevel: prediction[0].label, confidence: prediction[0].prob, topFeatures: topRiskFeatures.slice(0, 5), // Explainable AI }); } } ``` **Business Impact:** - Efficient processing of millions of transactions - Interpretable results (compliance teams can understand why flagged) - Reduced false positives through feature selection - **ROI:** Meets regulatory requirements, avoids fines ($X million) --- ### 5. Algorithmic Trading with DeepELMPro **Business Problem:** Predict stock price movements using deep feature hierarchies from multiple data sources (price, volume, news, social media). **Solution:** Use DeepELMPro with pretraining to learn hierarchical patterns in financial data. **Implementation:** ```typescript import { DeepELMPro } from '@astermind/astermind-pro'; // Algorithmic trading prediction model const tradingModel = new DeepELMPro({ layers: [512, 256, 128, 64], // Deep network for complex patterns categories: ['buy', 'hold', 'sell'], activation: 'relu', pretraining: true, // Pretrain layers to learn financial patterns layerWiseTraining: true, // Sequential training for stability regularization: { type: 'l2', lambda: 0.0001, }, useBatchNorm: true, // Stabilize training useDropout: true, dropoutRate: 0.2, maxLen: 1000, }); // Multi-source financial data // Features: price history, volume, technical indicators, // news sentiment, social media sentiment, market indicators const marketData = [ { priceHistory: [100, 101, 102, ...], volume: [1000000, 1200000, ...], technicalIndicators: [0.5, 0.6, ...], newsSentiment: 0.7, socialSentiment: 0.65, marketIndicators: [0.3, 0.4, ...], }, // ... more data ]; const tradingSignals = [0, 1, 2, ...]; // buy, hold, sell await tradingModel.train( marketData.map(d => flattenFeatures(d)), tradingSignals ); // Generate trading signal function generateTradingSignal(currentMarketData: MarketData) { const features = flattenFeatures(currentMarketData); const prediction = tradingModel.predict(features, 1); return { action: prediction[0].label, confidence: prediction[0].prob, // Use for automated trading or trader alerts }; } ``` **Business Impact:** - Better prediction accuracy through deep learning - Handles complex multi-source data - Reduces overfitting with regularization - **ROI:** Improves trading strategy Sharpe ratio by X% --- ## Healthcare & Life Sciences ### 1. Disease Diagnosis with Multi-Task ELM **Business Problem:** Diagnose patients by predicting disease type, severity, and recommended treatment simultaneously. **Solution:** Use Multi-Task ELM to leverage shared patient features across multiple diagnostic tasks. **Implementation:** ```typescript import { MultiTaskELM } from '@astermind/astermind-pro'; // Medical diagnosis system const diagnosisModel = new MultiTaskELM({ tasks: [ { name: 'disease', categories: ['diabetes', 'hypertension', 'heart_disease', 'none'], weight: 2.0, // Most critical }, { name: 'severity', categories: ['mild', 'moderate', 'severe', 'critical'], weight: 1.5, }, { name: 'treatment', categories: ['medication', 'lifestyle', 'surgery', 'monitoring'], weight: 1.0, }, ], sharedHiddenUnits: 512, taskSpecificHiddenUnits: [256, 256, 128], }); // Patient data const patients = [ { age: 55, bmi: 28.5, bloodPressure: [140, 90], glucose: 110, cholesterol: 220, // ... more vitals }, // ... more patients ]; const diseaseLabels = [0, 1, 2, 0, ...]; const severityLabels = [1, 2, 1, 0, ...]; const treatmentLabels = [0, 1, 0, 3, ...]; const yTaskData = new Map([ ['disease', diseaseLabels], ['severity', severityLabels], ['treatment', treatmentLabels], ]); diagnosisModel.train( patients.map(p => extractPatientFeatures(p)), yTaskData ); // Diagnose new patient function diagnosePatient(patient: Patient) { const features = extractPatientFeatures(patient); const predictions = diagnosisModel.predict(features, 1); return { disease: predictions.get('disease')?.[0].label, severity: predictions.get('severity')?.[0].label, recommendedTreatment: predictions.get('treatment')?.[0].label, confidence: predictions.get('disease')?.[0].prob, }; } ``` **Business Impact:** - Faster diagnosis (reduces time from hours to minutes) - More accurate multi-faceted diagnosis - Better treatment recommendations - **ROI:** Reduces misdiagnosis rate by X%, improves patient outcomes --- ### 2. Drug Discovery with Sparse ELM **Business Problem:** Identify promising drug compounds from millions of molecular features (genes, proteins, pathways). **Solution:** Use Sparse ELM to identify the most important molecular features for drug efficacy. **Implementation:** ```typescript import { SparseELM } from '@astermind/astermind-pro'; // Drug discovery system const drugDiscoveryModel = new SparseELM({ categories: ['effective', 'ineffective', 'toxic'], hiddenUnits: 1024, regularization: { type: 'l1', lambda: 0.1, // Strong L1 for feature selection }, sparsityTarget: 0.9, // Very sparse - only key features matter }); // Molecular compound data (10,000+ features) // Features: gene expressions, protein interactions, // pathway activations, chemical properties, etc. const compounds = [ [0.1, 0.0, 0.0, 0.3, 0.0, ...], // 10,000+ features [0.0, 0.2, 0.0, 0.0, 0.1, ...], // ... thousands of compounds ]; const efficacyLabels = [0, 1, 2, ...]; // effective, ineffective, toxic drugDiscoveryModel.train(compounds, efficacyLabels); // Identify important biomarkers const importance = drugDiscoveryModel.getFeatureImportance(); const keyBiomarkers = importance .map((imp, idx) => ({ biomarker: biomarkerNames[idx], importance: imp })) .filter(b => b.importance > 0.15) .sort((a, b) => b.importance - a.importance); console.log('Key biomarkers for drug efficacy:'); keyBiomarkers.forEach(({ biomarker, importance }) => { console.log(` ${biomarker}: ${(importance * 100).toFixed(1)}%`); }); // Screen new compounds function screenCompound(compound: Compound) { const features = extractCompoundFeatures(compound); const prediction = drugDiscoveryModel.predict(features, 1); if (prediction[0].label === 'effective' && prediction[0].prob > 0.8) { // Prioritize for further testing prioritizeForTesting(compound, { efficacy: prediction[0].label, confidence: prediction[0].prob, keyBiomarkers: keyBiomarkers.slice(0, 10), }); } } ``` **Business Impact:** - Faster drug candidate identification - Reduced R&D costs (focus on promising compounds) - Interpretable results (scientists understand why) - **ROI:** Reduces drug discovery time from 10 years to X years, saves $X billion --- ### 3. Patient Monitoring with Online Kernel ELM **Business Problem:** Monitor ICU patients in real-time and detect deterioration early. **Solution:** Use Online Kernel ELM to continuously learn from streaming patient vitals and adapt to individual patient patterns. **Implementation:** ```typescript import { OnlineKernelELM } from '@astermind/astermind-pro'; // Real-time patient monitoring const patientMonitor = new OnlineKernelELM({ kernel: { type: 'rbf', gamma: 0.1 }, categories: ['stable', 'deteriorating', 'critical'], windowSize: 1000, // Last 1000 readings decayFactor: 0.95, // Fast adaptation }); // Initial training on historical patient data const historicalVitals = [ { heartRate: 72, bloodPressure: [120, 80], oxygen: 98, ... }, // ... more readings ]; patientMonitor.fit( historicalVitals.map(v => extractVitalFeatures(v)), historicalLabels ); // Real-time monitoring function monitorPatient(patientId: string, vitals: Vitals) { const features = extractVitalFeatures(vitals); // Update model with new reading (labeled by medical staff) if (vitals.reviewedByStaff) { patientMonitor.update(features, vitals.status); } // Predict patient status const prediction = patientMonitor.predict(features, 1); if (prediction[0].label === 'deteriorating' || prediction[0].label === 'critical') { // Alert medical staff alertMedicalStaff(patientId, { status: prediction[0].label, confidence: prediction[0].prob, vitals: vitals, }); } } // Extract features from vitals function extractVitalFeatures(v: Vitals): number[] { return [ v.heartRate / 200, // Normalized v.bloodPressure[0] / 200, v.bloodPressure[1] / 150, v.oxygen / 100, // ... more features ]; } ``` **Business Impact:** - Early detection of patient deterioration - Reduced ICU mortality rates - Real-time alerts to medical staff - **ROI:** Reduces ICU mortality by X%, saves lives and reduces costs --- ## Retail & E-commerce ### 1. Product Recommendation with Multi-Kernel ELM **Business Problem:** Recommend products to customers by combining purchase history (linear patterns) and browsing behavior (non-linear patterns). **Solution:** Use Multi-Kernel ELM to combine different types of customer behavior patterns. **Implementation:** ```typescript import { MultiKernelELM } from '@astermind/astermind-pro'; // Product recommendation system const recommender = new MultiKernelELM(['product1', 'product2', 'product3', ...], { kernels: [ { type: 'rbf', params: { gamma: 0.01 } }, // Non-linear browsing patterns { type: 'linear' }, // Linear purchase patterns ], learnWeights: true, }); // Customer features: purchase history, browsing behavior, // demographics, preferences, etc. const customers = [ { purchaseHistory: [1, 0, 1, 0, ...], // Products purchased browsingTime: [120, 45, 300, ...], // Time spent on each category demographics: [35, 1, 0, ...], // Age, gender, location preferences: [0.8, 0.2, 0.9, ...], // Preference scores }, // ... more customers ]; const recommendedProducts = [0, 1, 2, ...]; // Product IDs recommender.fit( customers.map(c => flattenCustomerFeatures(c)), recommendedProducts ); // Recommend products for new customer function recommendProducts(customer: Customer) { const features = flattenCustomerFeatures(customer); const recommendations = recommender.predict(features, 10); // Top 10 return recommendations.map(r => ({ productId: r.label, relevanceScore: r.prob, })); } ``` **Business Impact:** - Increased conversion rates - Better personalization - Higher average order value - **ROI:** Increases revenue by X% through better recommendations --- ### 2. Inventory Demand Forecasting with Online Kernel ELM **Business Problem:** Forecast product demand in real-time as sales data streams in, adapting to seasonal changes and trends. **Solution:** Use Online Kernel ELM to continuously update demand forecasts from streaming sales data. **Implementation:** ```typescript import { OnlineKernelELM } from '@astermind/astermind-pro'; // Demand forecasting system const demandForecaster = new OnlineKernelELM({ kernel: { type: 'rbf', gamma: 0.01 }, categories: ['low', 'medium', 'high', 'very_high'], windowSize: 2000, // Last 2000 sales records decayFactor: 0.98, // Gradual decay for trend adaptation }); // Initial training on historical sales const historicalSales = [ { productId: 'P001', date: '2024-01-01', sales: 100, season: 'winter', promotions: true, // ... more features }, // ... more records ]; demandForecaster.fit( historicalSales.map(s => extractSalesFeatures(s)), historicalDemandLabels ); // Real-time demand forecasting function forecastDemand(product: Product, currentContext: Context) { const features = extractSalesFeatures({ productId: product.id, date: new Date(), season: getCurrentSeason(), promotions: currentContext.hasPromotions, // ... more features }); // Update with latest sales data if (currentContext.latestSales) { demandForecaster.update(features, currentContext.latestSales.demandLevel); } // Forecast demand const forecast = demandForecaster.predict(features, 1); return { demandLevel: forecast[0].label, confidence: forecast[0].prob, // Use for inventory management }; } ``` **Business Impact:** - Reduced stockouts and overstock - Better inventory optimization - Adapts to trends automatically - **ROI:** Reduces inventory costs by X%, increases sales by Y% --- ### 3. Customer Churn Prediction with DeepELMPro **Business Problem:** Predict which customers will churn using complex patterns from transaction history, support interactions, and usage data. **Solution:** Use DeepELMPro to learn hierarchical patterns in customer behavior. **Implementation:** ```typescript import { DeepELMPro } from '@astermind/astermind-pro'; // Customer churn prediction const churnPredictor = new DeepELMPro({ layers: [256, 128, 64], categories: ['retain', 'at_risk', 'churn'], activation: 'relu', pretraining: true, regularization: { type: 'l2', lambda: 0.0001, }, useDropout: true, dropoutRate: 0.2, }); // Customer data: transaction history, support tickets, // usage patterns, demographics, etc. const customers = [ { transactionHistory: [100, 150, 200, ...], supportTickets: 2, usageFrequency: 0.8, lastPurchaseDays: 5, // ... more features }, // ... more customers ]; const churnLabels = [0, 1, 2, ...]; // retain, at_risk, churn await churnPredictor.train( customers.map(c => extractCustomerFeatures(c)), churnLabels ); // Predict churn risk function predictChurn(customer: Customer) { const features = extractCustomerFeatures(customer); const prediction = churnPredictor.predict(features, 1); if (prediction[0].label === 'at_risk' || prediction[0].label === 'churn') { // Trigger retention campaign triggerRetentionCampaign(customer, { riskLevel: prediction[0].label, confidence: prediction[0].prob, }); } } ``` **Business Impact:** - Proactive customer retention - Reduced churn rate - Better customer lifetime value - **ROI:** Reduces churn by X%, saves $Y million in lost revenue --- ## Manufacturing & Supply Chain ### 1. Quality Control with Multi-Task ELM **Business Problem:** Inspect products for multiple quality issues simultaneously: defects, dimensions, and material quality. **Solution:** Use Multi-Task ELM to jointly predict multiple quality attributes. **Implementation: ```typescript import { MultiTaskELM } from '@astermind/astermind-pro'; // Quality control system const qualityInspector = new MultiTaskELM({ tasks: [ { name: 'defects', categories: ['none', 'minor', 'major', 'critical'], weight: 2.0, }, { name: 'dimensions', categories: ['within_spec', 'out_of_spec'], weight: 1.5, }, { name: 'material', categories: ['good', 'acceptable', 'poor'], weight: 1.0, }, ], sharedHiddenUnits: 256, taskSpecificHiddenUnits: [128, 128, 128], }); // Product inspection data: images, sensor readings, measurements const products = [ { imageFeatures: [0.1, 0.2, 0.3, ...], sensorReadings: [45.2, 23.1, 67.8, ...], measurements: [10.0, 20.0, 15.0, ...], }, // ... more products ]; const defectLabels = [0, 1, 2, 3, ...]; const dimensionLabels = [0, 1, 0, ...]; const materialLabels = [0, 1, 2, ...]; const yTaskData = new Map([ ['defects', defectLabels], ['dimensions', dimensionLabels], ['material', materialLabels], ]); qualityInspector.train( products.map(p => extractProductFeatures(p)), yTaskData ); // Inspect product function inspectProduct(product: Product) { const features = extractProductFeatures(product); const inspection = qualityInspector.predict(features, 1); const defects = inspection.get('defects')?.[0]; const dimensions = inspection.get('dimensions')?.[0]; const material = inspection.get('material')?.[0]; if (defects?.label !== 'none' || dimensions?.label === 'out_of_spec' || material?.label === 'poor') { // Reject product rejectProduct(product, { defects: defects?.label, dimensions: dimensions?.label, material: material?.label, }); } } ``` **Business Impact:** - Faster quality inspection - More comprehensive quality checks - Reduced defective products reaching customers - **ROI:** Reduces defect rate by X%, saves $Y in warranty costs --- ### 2. Predictive Maintenance with Online Kernel ELM **Business Problem:** Predict equipment failures in real-time from streaming sensor data. **Solution:** Use Online Kernel ELM to continuously monitor equipment and adapt to changing conditions. **Implementation:** ```typescript import { OnlineKernelELM } from '@astermind/astermind-pro'; // Predictive maintenance system const maintenancePredictor = new OnlineKernelELM({ kernel: { type: 'rbf', gamma: 0.1 }, categories: ['normal', 'warning', 'critical', 'failure'], windowSize: 5000, // Last 5000 sensor readings decayFactor: 0.99, }); // Initial training on historical sensor data const historicalSensorData = [ { temperature: 75.2, vibration: 0.5, pressure: 100.5, // ... more sensors }, // ... more readings ]; maintenancePredictor.fit( historicalSensorData.map(d => extractSensorFeatures(d)), historicalStatusLabels ); // Real-time monitoring function monitorEquipment(equipmentId: string, sensorData: SensorData) { const features = extractSensorFeatures(sensorData); // Update with latest reading (labeled by maintenance team) if (sensorData.reviewedByMaintenance) { maintenancePredictor.update(features, sensorData.status); } // Predict equipment status const prediction = maintenancePredictor.predict(features, 1); if (prediction[0].label === 'warning' || prediction[0].label === 'critical') { // Schedule maintenance scheduleMaintenance(equipmentId, { status: prediction[0].label, confidence: prediction[0].prob, sensorData: sensorData, }); } } ``` **Business Impact:** - Prevents unexpected equipment failures - Optimized maintenance scheduling - Reduced downtime - **ROI:** Reduces unplanned downtime by X%, saves $Y in production losses --- ## Legal & Compliance ### 1. Contract Analysis with Multi-Kernel ELM **Business Problem:** Classify legal contracts by type, risk level, and required actions by analyzing both structured (clauses) and unstructured (language patterns) content. **Solution:** Use Multi-Kernel ELM to combine linear clause patterns and non-linear language patterns. **Implementation:** ```typescript import { MultiKernelELM } from '@astermind/astermind-pro'; import { tokenize } from '@astermind/astermind-pro'; // Contract analysis system const contractAnalyzer = new MultiKernelELM([ 'employment', 'nda', 'service_agreement', 'purchase_order', 'other' ], { kernels: [ { type: 'rbf', params: { gamma: 0.01 } }, // Language patterns { type: 'linear' }, // Clause patterns ], learnWeights: true, }); // Contract texts const contracts = [ 'This Employment Agreement is entered into...', 'This Non-Disclosure Agreement...', // ... more contracts ]; const contractTypes = [0, 1, 2, ...]; // Convert to features const X = contracts.map(contract => { const tokens = tokenize(contract, true); // Extract clause features and language features return combineFeatures( extractClauseFeatures(contract), extractLanguageFeatures(tokens) ); }); contractAnalyzer.fit(X, contractTypes); // Analyze new contract function analyzeContract(contractText: string) { const tokens = tokenize(contractText, true); const features = combineFeatures( extractClauseFeatures(contractText), extractLanguageFeatures(tokens) ); const prediction = contractAnalyzer.predict(features, 1); return { contractType: prediction[0].label, confidence: prediction[0].prob, // Route to appropriate legal team }; } ``` **Business Impact:** - Faster contract processing - Automated contract routing - Better risk assessment - **ROI:** Reduces legal review time by X%, saves $Y in legal costs --- ### 2. Regulatory Compliance Monitoring with Sparse ELM **Business Problem:** Monitor transactions and activities for compliance violations across thousands of regulatory features. **Solution:** Use Sparse ELM to identify the most important compliance signals and create an interpretable model. **Implementation:** ```typescript import { SparseELM } from '@astermind/astermind-pro'; // Compliance monitoring system const complianceMonitor = new SparseELM({ categories: ['compliant', 'review_required', 'violation'], hiddenUnits: 512, regularization: { type: 'l1', lambda: 0.01, }, sparsityTarget: 0.85, // Very sparse for interpretability }); // Transaction/activity data (1000+ compliance features) const activities = [ [0.1, 0.0, 0.0, 0.3, 0.0, ...], // 1000+ features // ... more activities ]; const complianceLabels = [0, 1, 2, ...]; complianceMonitor.train(activities, complianceLabels); // Get important compliance signals const importance = complianceMonitor.getFeatureImportance(); const keySignals = importance .map((imp, idx) => ({ signal: complianceFeatureNames[idx], importance: imp })) .filter(s => s.importance > 0.1) .sort((a, b) => b.importance - a.importance); // Monitor new activity function monitorCompliance(activity: Activity) { const features = extractComplianceFeatures(activity); const prediction = complianceMonitor.predict(features, 1); if (prediction[0].label !== 'compliant') { // Flag for compliance review flagForReview(activity, { status: prediction[0].label, confidence: prediction[0].prob, keySignals: keySignals.slice(0, 5), // Explainable }); } } ``` **Business Impact:** - Automated compliance monitoring - Interpretable results (auditors can understand) - Reduced compliance violations - **ROI:** Prevents regulatory fines ($X million), reduces audit costs --- ## Marketing & Advertising ### 1. Customer Segmentation with DeepELMPro **Business Problem:** Segment customers into detailed personas using complex behavioral patterns from multiple data sources. **Solution:** Use DeepELMPro to learn hierarchical customer patterns. **Implementation:** ```typescript import { DeepELMPro } from '@astermind/astermind-pro'; // Customer segmentation const segmenter = new DeepELMPro({ layers: [256, 128, 64], categories: ['price_sensitive', 'quality_seeker', 'brand_loyal', 'bargain_hunter', 'impulse_buyer'], activation: 'relu', pretraining: true, regularization: { type: 'l2', lambda: 0.0001, }, }); // Customer data: purchase history, browsing, demographics, // social media, preferences, etc. const customers = [ { purchaseHistory: [100, 150, 200, ...], browsingBehavior: [0.8, 0.2, 0.9, ...], demographics: [35, 1, 0, ...], socialMediaActivity: [50, 30, 20, ...], }, // ... more customers ]; const segmentLabels = [0, 1, 2, 3, 4, ...]; await segmenter.train( customers.map(c => extractCustomerFeatures(c)), segmentLabels ); // Segment new customer function segmentCustomer(customer: Customer) { const features = extractCustomerFeatures(customer); const prediction = segmenter.predict(features, 1); return { segment: prediction[0].label, confidence: prediction[0].prob, // Use for targeted marketing campaigns }; } ``` **Business Impact:** - Better customer targeting - Improved marketing ROI - Personalized campaigns - **ROI:** Increases marketing conversion by X%, improves ROI by Y% --- ### 2. Ad Performance Prediction with Multi-Kernel ELM **Business Problem:** Predict ad performance by combining click-through patterns (linear) and engagement patterns (non-linear). **Solution:** Use Multi-Kernel ELM to combine different types of ad performance signals. **Implementation:** ```typescript import { MultiKernelELM } from '@astermind/astermind-pro'; // Ad performance prediction const adPredictor = new MultiKernelELM(['low', 'medium', 'high', 'very_high'], { kernels: [ { type: 'rbf', params: { gamma: 0.01 } }, // Engagement patterns { type: 'linear' }, // Click patterns ], learnWeights: true, }); // Ad features: creative, targeting, placement, timing, etc. const ads = [ { creativeFeatures: [0.8, 0.2, 0.9, ...], targetingFeatures: [0.5, 0.7, 0.3, ...], placementFeatures: [0.6, 0.4, 0.8, ...], }, // ... more ads ]; const performanceLabels = [0, 1, 2, 3, ...]; adPredictor.fit( ads.map(a => flattenAdFeatures(a)), performanceLabels ); // Predict ad performance function predictAdPerformance(ad: Ad) { const features = flattenAdFeatures(ad); const prediction = adPredictor.predict(features, 1); return { expectedPerformance: prediction[0].label, confidence: prediction[0].prob, // Use for ad budget allocation }; } ``` **Business Impact:** - Better ad budget allocation - Improved ad performance - Reduced wasted ad spend - **ROI:** Increases ad ROI by X%, reduces wasted spend by $Y --- ## Insurance ### 1. Claims Fraud Detection with Sparse ELM **Business Problem:** Detect fraudulent insurance claims from high-dimensional claim data (1000+ features per claim). **Solution:** Use Sparse ELM to identify key fraud indicators and create an interpretable model. **Implementation:** ```typescript import { SparseELM } from '@astermind/astermind-pro'; // Claims fraud detection const fraudDetector = new SparseELM({ categories: ['legitimate', 'suspicious', 'fraud'], hiddenUnits: 512, regularization: { type: 'l1', lambda: 0.01, }, sparsityTarget: 0.8, }); // Claim data (1000+ features) const claims = [ [0.1, 0.0, 0.0, 0.3, 0.0, ...], // 1000+ features // ... more claims ]; const fraudLabels = [0, 1, 2, ...]; fraudDetector.train(claims, fraudLabels); // Get key fraud indicators const importance = fraudDetector.getFeatureImportance(); const fraudIndicators = importance .map((imp, idx) => ({ indicator: claimFeatureNames[idx], importance: imp })) .filter(i => i.importance > 0.1) .sort((a, b) => b.importance - a.importance); // Detect fraud function detectFraud(claim: Claim) { const features = extractClaimFeatures(claim); const prediction = fraudDetector.predict(features, 1); if (prediction[0].label !== 'legitimate') { flagForInvestigation(claim, { riskLevel: prediction[0].label, confidence: prediction[0].prob, indicators: fraudIndicators.slice(0, 5), }); } } ``` **Business Impact:** - Reduced fraudulent claims - Interpretable fraud detection - Faster claim processing - **ROI:** Prevents $X million in fraudulent claims annually --- ### 2. Risk Assessment with Multi-Task ELM **Business Problem:** Assess insurance risk across multiple dimensions: claim probability, claim severity, and premium recommendation. **Solution:** Use Multi-Task ELM to jointly predict multiple risk factors. **Implementation:** ```typescript import { MultiTaskELM } from '@astermind/astermind-pro'; // Insurance risk assessment const riskAssessor = new MultiTaskELM({ tasks: [ { name: 'claim_probability', categories: ['low', 'medium', 'high', 'very_high'], weight: 2.0, }, { name: 'claim_severity', categories: ['low', 'medium', 'high'], weight: 1.5, }, { name: 'premium', categories: ['standard', 'increased', 'high', 'decline'], weight: 1.0, }, ], sharedHiddenUnits: 256, taskSpecificHiddenUnits: [128, 128, 128], }); // Policyholder data const policyholders = [ { age: 35, drivingRecord: [0, 1, 0, ...], // Accidents, violations vehicleType: 'sedan', location: 'urban', // ... more features }, // ... more policyholders ]; const claimProbLabels = [0, 1, 2, 3, ...]; const severityLabels = [0, 1, 2, ...]; const premiumLabels = [0, 1, 2, 3, ...]; const yTaskData = new Map([ ['claim_probability', claimProbLabels], ['claim_severity', severityLabels], ['premium', premiumLabels], ]); riskAssessor.train( policyholders.map(p => extractPolicyholderFeatures(p)), yTaskData ); // Assess risk function assessRisk(policyholder: Policyholder) { const features = extractPolicyholderFeatures(policyholder); const assessment = riskAssessor.predict(features, 1); return { claimProbability: assessment.get('claim_probability')?.[0].label, claimSeverity: assessment.get('claim_severity')?.[0].label, recommendedPremium: assessment.get('premium')?.[0].label, }; } ``` **Business Impact:** - Better risk pricing - Reduced underwriting losses - Optimized premium recommendations - **ROI:** Improves underwriting profitability by X% --- ## Real Estate ### 1. Property Valuation with Multi-Kernel ELM **Business Problem:** Estimate property values by combining location features (linear) and property characteristics (non-linear). **Solution:** Use Multi-Kernel ELM to combine different types of property features. **Implementation:** ```typescript import { MultiKernelELM } from '@astermind/astermind-pro'; // Property valuation const propertyValuer = new MultiKernelELM([ '$100k-$200k', '$200k-$300k', '$300k-$500k', '$500k-$750k', '$750k+' ], { kernels: [ { type: 'rbf', params: { gamma: 0.01 } }, // Property characteristics { type: 'linear' }, // Location features ], learnWeights: true, }); // Property data const properties = [ { locationFeatures: [0.8, 0.2, 0.9, ...], // School ratings, crime, amenities propertyFeatures: [3, 2, 1500, ...], // Bedrooms, bathrooms, sqft marketFeatures: [0.7, 0.5, ...], // Market trends, inventory }, // ... more properties ]; const priceRangeLabels = [0, 1, 2, 3, 4, ...]; propertyValuer.fit( properties.map(p => flattenPropertyFeatures(p)), priceRangeLabels ); // Estimate property value function estimateValue(property: Property) { const features = flattenPropertyFeatures(property); const prediction = propertyValuer.predict(features, 1); return { priceRange: prediction[0].label, confidence: prediction[0].prob, }; } ``` **Business Impact:** - Faster property valuations - More accurate pricing - Better investment decisions - **ROI:** Improves pricing accuracy by X%, increases sales velocity --- ## Energy & Utilities ### 1. Energy Demand Forecasting with Online Kernel ELM **Business Problem:** Forecast energy demand in real-time from streaming consumption data, adapting to weather and events. **Solution:** Use Online Kernel ELM to continuously update demand forecasts. **Implementation:** ```typescript import { OnlineKernelELM } from '@astermind/astermind-pro'; // Energy demand forecasting const demandForecaster = new OnlineKernelELM({ kernel: { type: 'rbf', gamma: 0.01 }, categories: ['low', 'medium', 'high', 'peak'], windowSize: 2000, decayFactor: 0.98, }); // Historical consumption data const consumptionData = [ { time: '2024-01-01 10:00', temperature: 72, weather: 'sunny', dayOfWeek: 1, consumption: 1000, }, // ... more data ]; demandForecaster.fit( consumptionData.map(d => extractConsumptionFeatures(d)), consumptionLabels ); // Forecast demand function forecastDemand(currentContext: Context) { const features = extractConsumptionFeatures({ time: new Date(), temperature: currentContext.temperature, weather: currentContext.weather, dayOfWeek: new Date().getDay(), }); // Update with latest consumption if (currentContext.latestConsumption) { demandForecaster.update(features, currentContext.latestConsumption.level); } const forecast = demandForecaster.predict(features, 1); return { demandLevel: forecast[0].label, confidence: forecast[0].prob, // Use for grid management }; } ``` **Business Impact:** - Better grid management - Reduced energy waste - Optimized power generation - **ROI:** Reduces energy costs by X%, improves grid stability --- ## Telecommunications ### 1. Network Anomaly Detection with Online Kernel ELM **Business Problem:** Detect network anomalies in real-time from streaming network metrics. **Solution:** Use Online Kernel ELM to continuously monitor network health. **Implementation:** ```typescript import { OnlineKernelELM } from '@astermind/astermind-pro'; // Network monitoring const networkMonitor = new OnlineKernelELM({ kernel: { type: 'rbf', gamma: 0.1 }, categories: ['normal', 'degraded', 'critical', 'outage'], windowSize: 5000, decayFactor: 0.99, }); // Network metrics const networkMetrics = [ { latency: 50, packetLoss: 0.01, bandwidth: 1000, errorRate: 0.001, }, // ... more metrics ]; networkMonitor.fit( networkMetrics.map(m => extractNetworkFeatures(m)), networkStatusLabels ); // Monitor network function monitorNetwork(metrics: NetworkMetrics) { const features = extractNetworkFeatures(metrics); if (metrics.reviewedByOps) { networkMonitor.update(features, metrics.status); } const prediction = networkMonitor.predict(features, 1); if (prediction[0].label !== 'normal') { alertNetworkOps({ status: prediction[0].label, confidence: prediction[0].prob, metrics: metrics, }); } } ``` **Business Impact:** - Proactive network issue detection - Reduced downtime - Better service quality - **ROI:** Reduces network downtime by X%, improves customer satisfaction --- ## Summary: Choosing the Right Variant ### Use **Multi-Kernel ELM** when: - You have heterogeneous data patterns - Combining linear and non-linear patterns - **Examples:** Financial sentiment, product recommendations, contract analysis ### Use **DeepELMPro** when: - Complex hierarchical patterns - Need better generalization - **Examples:** Algorithmic trading, customer segmentation, churn prediction ### Use **Online Kernel ELM** when: - Streaming/real-time data - Data distribution changes over time - **Examples:** Fraud detection, patient monitoring, demand forecasting ### Use **Multi-Task ELM** when: - Multiple related predictions needed - Tasks share underlying features - **Examples:** Credit risk, disease diagnosis, quality control ### Use **Sparse ELM** when: - High-dimensional data (1000+ features) - Need interpretability - Need efficiency - **Examples:** Drug discovery, AML detection, compliance monitoring --- ## Business ROI Summary | Industry | Use Case | ELM Variant | Key Benefit | Typical ROI | |----------|----------|-------------|-------------|-------------| | Finance | Fraud Detection | Online Kernel | Real-time adaptation | Prevents $X million/year | | Finance | Credit Risk | Multi-Task | Multi-faceted assessment | Reduces defaults by X% | | Healthcare | Disease Diagnosis | Multi-Task | Comprehensive diagnosis | Reduces misdiagnosis by X% | | Healthcare | Drug Discovery | Sparse | Feature identification | Saves $X billion, 10→X years | | Retail | Recommendations | Multi-Kernel | Better personalization | Increases revenue by X% | | Retail | Demand Forecasting | Online Kernel | Real-time adaptation | Reduces inventory costs by X% | | Manufacturing | Quality Control | Multi-Task | Comprehensive inspection | Reduces defects by X% | | Legal | Contract Analysis | Multi-Kernel | Faster processing | Saves $Y in legal costs | | Insurance | Fraud Detection | Sparse | Interpretable detection | Prevents $X million/year | | Energy | Demand Forecasting | Online Kernel | Grid optimization | Reduces costs by X% | --- ## Next Steps - See [ELM_VARIANTS_EXAMPLES.md](./ELM_VARIANTS_EXAMPLES.md) for technical implementation details - Review [DEVELOPER_GUIDE.md](../guides/DEVELOPER_GUIDE.md) for advanced patterns - Check [PREMIUM_FEATURES.md](./PREMIUM_FEATURES.md) for complete feature documentation