@astermind/astermind-pro
Version:
Astermind Pro - Premium ML Toolkit with Advanced RAG, Reranking, Summarization, and Information Flow Analysis
31 lines • 1.22 kB
TypeScript
import type { Kernel } from '../types.js';
export type SparseVec = Map<number, number>;
/**
* Compute TF-IDF vector from tokens
*/
export declare function toTfidf(tokens: string[], idf: number[], vmap: Map<string, number>, headingW?: number): SparseVec;
/**
* Cosine similarity between two sparse vectors
*/
export declare function cosineSparse(a: SparseVec, b: SparseVec): number;
/**
* Convert sparse vector to dense Float64Array
*/
export declare function sparseToDense(v: SparseVec, dim: number): Float64Array;
/**
* Dot product of two dense vectors
*/
export declare function dotProd(a: Float64Array, b: Float64Array): number;
/**
* Base kernel function (RBF, cosine, or poly2)
*/
export declare function baseKernel(a: Float64Array, b: Float64Array, k: Kernel, sigma: number): number;
/**
* Kernel similarity between two dense vectors
*/
export declare function kernelSim(a: Float64Array, b: Float64Array, k: Kernel, sigma: number): number;
/**
* Project sparse vector to dense using Nyström landmarks
*/
export declare function projectToDense(v: SparseVec, vocabSize: number, landmarkMat: Float64Array[], kernel: Kernel, sigma: number): Float64Array;
//# sourceMappingURL=vectorization.d.ts.map