UNPKG

@astermind/astermind-pro

Version:

Astermind Pro - Premium ML Toolkit with Advanced RAG, Reranking, Summarization, and Information Flow Analysis

31 lines 1.22 kB
import type { Kernel } from '../types.js'; export type SparseVec = Map<number, number>; /** * Compute TF-IDF vector from tokens */ export declare function toTfidf(tokens: string[], idf: number[], vmap: Map<string, number>, headingW?: number): SparseVec; /** * Cosine similarity between two sparse vectors */ export declare function cosineSparse(a: SparseVec, b: SparseVec): number; /** * Convert sparse vector to dense Float64Array */ export declare function sparseToDense(v: SparseVec, dim: number): Float64Array; /** * Dot product of two dense vectors */ export declare function dotProd(a: Float64Array, b: Float64Array): number; /** * Base kernel function (RBF, cosine, or poly2) */ export declare function baseKernel(a: Float64Array, b: Float64Array, k: Kernel, sigma: number): number; /** * Kernel similarity between two dense vectors */ export declare function kernelSim(a: Float64Array, b: Float64Array, k: Kernel, sigma: number): number; /** * Project sparse vector to dense using Nyström landmarks */ export declare function projectToDense(v: SparseVec, vocabSize: number, landmarkMat: Float64Array[], kernel: Kernel, sigma: number): Float64Array; //# sourceMappingURL=vectorization.d.ts.map