UNPKG

@astermind/astermind-pro

Version:

Astermind Pro - Premium ML Toolkit with Advanced RAG, Reranking, Summarization, and Information Flow Analysis

55 lines 1.64 kB
import { type SparseVec } from './vectorization.js'; import type { Kernel } from '../types.js'; export interface IndexState { vocabMap: Map<string, number>; idf: number[]; tfidfDocs: SparseVec[]; landmarksIdx: number[]; landmarkMat: Float64Array[]; denseDocs: Float64Array[]; } export interface BuildIndexOptions { chunks: Array<{ heading: string; content: string; }>; vocab: number; landmarks: number; headingW: number; useStem: boolean; kernel: Kernel; sigma: number; } /** * Build vocabulary and IDF from chunks */ export declare function buildVocabAndIdf(chunks: Array<{ heading: string; content: string; }>, vocabSize: number, useStem: boolean): { vocabMap: Map<string, number>; idf: number[]; }; /** * Build TF-IDF vectors for all chunks */ export declare function buildTfidfDocs(chunks: Array<{ heading: string; content: string; }>, vocabMap: Map<string, number>, idf: number[], headingW: number, useStem: boolean): SparseVec[]; /** * Build Nyström landmarks from TF-IDF documents */ export declare function buildLandmarks(tfidfDocs: SparseVec[], vocabSize: number, numLandmarks: number): { landmarksIdx: number[]; landmarkMat: Float64Array[]; }; /** * Build dense projections for all TF-IDF documents */ export declare function buildDenseDocs(tfidfDocs: SparseVec[], vocabSize: number, landmarkMat: Float64Array[], kernel: Kernel, sigma: number): Float64Array[]; /** * Build complete index from chunks */ export declare function buildIndex(opts: BuildIndexOptions): IndexState; //# sourceMappingURL=index-builder.d.ts.map